Графическое изображение электростатических полей

Электрический заряд создает в окружающем его пространстве электрическое поле. Отличительной особенностью электрического поля является его способность действовать на заряженные частицы, помещенные в поле. Благодаря электрическому полю осуществляется взаимное притяжение или отталкивание заряженных тел, т. е. силовое взаимодействие согласно закону Кулона.

О наличии электрического поля и о его интенсивности можно судить по механической силе F, действующей на заряженную частицу q, находящуюся в этом поле. Так как движение свободной частицы происходит под действием этой силы, то направление электрического поля принято считать совпадающим с направлением силы F, действующей на положительно заряженную частицу.

Механическая сила, с которой поле действует на единичный положительный заряд, помещенный в данной точке, называется напряженностью электрического ноля и обозначается буквой ξ.

Согласно этому определению

В Международной системе единиц (СИ) напряженность электрического поля измеряется в вольтах на метр: в/м.

Напряженность электрического поля как любая механическая сила характеризуется как численным значением, так и направлением в пространстве (рис. 5), т. е. является векторной величиной.

Она изображается на чертеже отрезком, длина которого в определенном масштабе выражает числовое значение величины ξ., а стрелка указывает ее направление.

Электрическое поле удобно изображать графически с помощью так называемых силовых линий:

касательная, нанесенная в каждой точке этих линий, совпадает с вектором напряженности ξ. в этой точке поля.

Если в формуле Кулона один из зарядов принять равным единице, то мы получим силу, действующую на единицу заряда, т. е. напряженность электрического поля. Поэтому для напряженности электрического поля

На рис. 6, а графически показана напряженность электрического поля в точках А и В, удаленных на

расстояние r 1 и r 2 от положительного заряда q, помещенного в какойлибо среде.

Как видно из чертежа, напряженность поля достаточно малого (точечного) положительного заряда направлена от заряда вдоль радиуса. Напряженность поля в точках А и В, разноудаленных от заряда q,

различна и убывает по мере удаления от заряда q обратно пропорционально квадрату расстояния. На рис. 6, б графически показана напряженность электрического поля в точках А и В, удаленных на расстояние r 1 и r 2 от одиночного отрицательного заряда -q, находящегося в какой-либо среде. Напряженность поля в этом случае направлена вдоль радиуса к заряду.

Рассмотрим теперь, чему равна напряженность поля, созданного двумя электрическими зарядами +q 1 и

Q 2 в некоторой точке А (рис. 7). Если убрать заряд -q 2 , то напряженность поля в точке А, созданная зарядом +q 2 , будет ξ 1 , Наоборот, если убрать заряд +q 1 . то напряженность поля в точке А, созданная зарядом -q 2 , будет ξ 2 . Так как напряженности ξ 1 и ξ 2 направлены под углом одна к другой, то для получения результирующей напряженности поля ξ от совместного действия зарядов +q 1 и -q 2 необходимо напряженности ξ 1 и ξ 2 сложить по правилу параллелограмма. Тем же способом можно вычислить и построить напряженность в любой точке поля при любом числе электрических зарядов.

Положительный электрический заряд, внесенный в поле положительно заряженного тела шарообразной формы, будет отталкиваться по прямой линии, являющейся продолжением радиуса заряженного тела. ­

Помещая электрический заряд в различные точки поля заряженного шара и отмечая траектории движения заряда под действием его электрических сил, мы получим ряд радиальных прямых, расходящихся от шара во все стороны. Эти воображаемые линии, по которым стремится двигаться положительный, лишенный инерции заряд, внесенный в электрическое поле, как было указано выше, называются электрическими силовыми линиями . Ясно, что в электрическом поле можно провести любое число силовых линий. С помощью силовых линий можно графически изобразить не только направление, но и величину напряженности электрического поля в данной точке. Если условиться проводить силовые линии так, чтобы через квадратный сантиметр поверхности, перпендикулярной к этим линиям в данной точке поля, проходило такое их количество, которое было бы равно напряженности поля в этой точке, то этот графический прием позволит нам судить о величине напряженности в данной точке поля по густоте силовых линий.

На рис. 8, а дано электрическое поле положительно заряженного шара, удаленного от других зарядов, а на рис. 8, б дано поле отрицательно заряженного шара.

Рассмотрим более сложное электрическое поле между двумя разноименными точечными зарядами (рис. 9, а). Возьмем точку А и построим для нее вектор напряженности с учетом одновременного

действия двух заряженных тел.

На конце вектора напряженности ξ 1 ставим точку Б и строим вектор напряжения в этой точке. В точке В , установленной на конце вектора напряженности ξ 2 строим вектор напряженности и т. д. Ломаная линия АБВГД показывает направление электрического поля в точках А, Б, В, Г и Д. При большем числе промежуточных точек (рис. 9, б) ломаная линия, соединяющая эти точки, будет точнее передавать направления поля.

Точное представление о направлении поля даст линия с бесконечно большим числом этих точек на ней. При этом ломаная линия переходит в некоторую плавную кривую (рис. 9, в). Направление поля в данной точке совпадает с вектором напряженности и может быть указано направлением касательной к силовой линии в этой же точке.

На рис. 10, а дано изображение электрического поля двух физически точечных разноименных зарядов, а на рис. 10, б - двух одноименных зарядов.

Электрическое поле, напряженность которого в разных точках пространства одинакова по величине и по направлению, называется однородным, или равномерным. Практически однородное поле получается между большими параллельными пластинами (рис. 11).


Однородное электрическое поле изображается параллельными линиями, расположенными на одинаковых расстояниях одна от другой.

Так как одноименные заряды взаимно отталкиваются, то электрический заряд сосредоточивается только на внешней поверхности проводника. Количество электричества, приходящееся на единицу поверхности заряженного тела, называется поверхностной плотностью электрического заряда. Величина плотности электрического заряда зависит от количества электричества на теле, а также от формы поверхности проводника. На телах правильной формы (шар, очень длинные проводники круглого сечения) электрический заряд распределяется равномерно. Поэтому поверхностная плотность электрического заряда во всех точках поверхности таких тел будет одинакова.

На проводниках неправильной формы заряд распределяется неравномерно. Большая плотность электричества будет на выступах, выпуклостях, меньшая - во впадинах, углублениях.

Особенно велика плотность электричества на остриях. Поэтому части заряда, находящиеся на острие тела неправильной формы, будут испытывать силы отталкивания, стремящиеся удалить эти части заряда с поверхности тела. Большая часть заряда, скопившаяся на острие проводника, может образовать в этом месте сильное электрическое поле, под влиянием которого воздух (или другой диэлектрик) будет ионизирован и станет проводящим. В этом случае электрический заряд, как говорят, начинает стекать с острия. Во избежание этого в электротехнике высоких напряжений на проводниках тщательно устраняют острые углы, концы, выступы.

1. Электрические поля изображаются силовыми линиями или линиями напряженности.

Линии напряженности – это линии по касательным, к которым располагаются вектора сил, действующих на пробный положительный заряд или вектора напряженности.

Свойства линий напряженности:

А) Выходят из положительных зарядов, а входят в отрицательные заряды.

Б) Нигде не пересекаются.

В) Густота линий говорит об интенсивности электрического поля.

Изображение электрических полей

А) Электрическое поле изолированного положительного заряда

Б) Электрическое поле изолированного отрицательного заряда

В) Электрическое поле системы двух разноименных зарядов

Г) Электрическое поле системы двух одноименных зарядов

Д) Электрическое поле плоского конденсатора. Однородное электрическое поле

Вопрос

Работа электрического поля по перемещению заряда.

A AB = F ЭЛ ∙ AB ∙ cosα = F ЭЛ ∙ AC

A ACB = A AC + A CB = F ЭЛ ∙ AC ∙ cos0 + F ЭЛ ∙ CB ∙ cos90 О = F ЭЛ ∙ AC

1. Работа электрического поля не зависит от формы траектории заряда, определяется его начальным положением и конечным.

2. Работа по перемещению заряда по замкнутому контуру равна 0.

Поля с такими свойствами называются потенциальными, значит электрическое поле – потенциально. И можно ввести характеристику потенциал.

Потенциал – это энергетическая характеристика электрического поля, она численно равна потенциальной энергии единичного положительного заряда данной точки поля.

Потенциал.

[φ]си = 1 = 1В (вольт)

Родственные потенциалу величины, разность потенциалов и напряжение.

φ 2 – φ 1 = Δφ = = φ

Потенциал точечного заряда. r

Взаимосвязь разности потенциалов или напряженности электрического поля.

Δφ = E ∙d U = E ∙ d

Вопрос

Проводники и диэлектрики в электрическом поле.

1. Проводники вне электрического поля

Проводник в электрическом поле

Внутри проводника электрическое поле отсутствует (электростатическая защита от электрических полей)

2.Различают 2 вида диэлектриков с жесткими и мягкими диполями.

Диэлектрик с жесткими диполями вне электрического поля.

Диполь – это поляризованная молекула.

В электрическом поле

Диэлектрик с мягкими диполями вне электрического поля.

Диэлектрик с мягкими диполями в электрическом поле

Вывод: диэлектрик ослабляет внешнее электрическое поле в ε раз.

Вопрос

Электрическая емкость проводника. Конденсаторы.

Электрическая емкость – это характеристика проводника. Она численно равна заряду, который нужно сообщить проводнику, что бы его потенциал возрос на 1 единицу.

[C]си = 1Ф (Фарада)

1мкФ = 10 -6 Ф

1пФ = 10 -12 Ф

Электрическая емкость зависит от формы, размеров проводника, вида диэлектрика, но не зависит от материала проводника.

1. Особый интерес вызывают системы двух проводников разделенных диэлектриком – конденсаторы.

Конденсаторы - это накопители электрической энергии.

Виды конденсаторов:

1. По форме пластин

А) Плоский конденсатор

Б) Лейденская банка

В) Сферические

2. По виду диэлектрика

А) Воздушный

Б) Стеклянный

В) Бумажный

3. По емкости

А) Постоянный

Б) Переменный

Вопрос

Соединение конденсатора в батарее.

Последовательное Параллельное

W ЭЛ =

Вопрос

Электрический ток. Направление тока. Величины, характеризующие ток.

1. Электрический ток – это направленное движение заряженных частиц.

Различают истинное и техническое направление тока.

Истинное направление – это направление движения тех заряженных частиц, которое создают ток.

Техническое направление тока (которое отмечается в схемах) – это направление движения положительно заряженных частиц.

3. Скорость тока

Различают:

Скорость направленного движения частиц (электронов)

Под скоростью тока понимают скорость распространение электрического поля в цепи

4. Величины, характеризующие ток:

1. Сила тока – это величина численно равная заряду, проходящему через поперечное сечение проводника в единицу времени.

2. Плотность тока j

Вопрос

Условия возникновения тока. Внешний и внутренний участки цепи. ЭДС. Закон Ома для полной цепи (1 форма).

1) Замкнутая цепь

2) Источник тока, который поддерживает электрическое поле в цепи.

2. Электрическую цепь делят на 2 части

1) Внутренний участок цепи (источник тока)

2) Внешний участок цепи (потребитель)

Источник тока характеризуется особой величиной - электродвижущей силой (ЭДС), которая родственна напряжению.

ЭДС – это величина, численно равная работе сторонних сил по перемещению единичного заряда на внутреннем участке цепи.

Закон Ома для полной цепи

Закон Ома для полной цепи:

ЭДС источника тока равна сумме напряжения на внешнем и на внутреннем участках цепи.

Взаимодействия зарядов передаются с помощью особого материального посредника, называемого электрическим полем . Взаимодействие двух зарядов q 1 и q 2 можно объяснить так: в пространстве вокруг заряда q 1 существует особая форма материи – электрическое поле, которое и действует непосредственно на заряд q 2 .Действие электрического поля на помещенный в него заряд является основным его свойством .

Электрическое поле, созданное неподвижными зарядами, называется электростатическим .

Напряженность электростатического поля

Напряженность поля - векторная ха­рак­те­ристика электрического поля. Напря­жен­ность поля в некоторой точке определяется отно­шением силы, действующей со стороны поля на положительный заряд q 0 , помещенный в данную точку поля, к величине этого заряда :


, [

].



(1)

Напряженность электрического поля точечного заряда










. (2)

Принцип суперпозиции полей

Напряженность поля, создаваемая в какой-либо точке пространства системой зарядов, равна векторной сумме напряженностей, создаваемых в этой точке каждым из зарядов:


(3)


Напряженность поля непрерывно распределенного заряда:

. (4)

Характеристики распределенных зарядов


- линейная плотность зарядов;


- поверхностная плотность зарядов;


- объемная плотность зарядов;

Графическое изображение электрических полей. Силовые линии

Силовые линии это непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности электрического поля.

Свойства силовых линий

    силовые линии всегда начинаются на положительных зарядах и заканчиваются на отрицательных;

    силовые линии начинаются и заканчиваются либо на зарядах, либо уходят в бесконечность;

    густота силовых линий (число силовых линий, проходящих через единицу площади) пропор­ци­о­нальна напряженности электрического поля;

    силовые линии не пересекаются.

Примеры электрических полей

22. Работа сил электростатического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенци­альный характер электростатического поля.


(1)


. (2)

С учетом того, что



. (3)

Работа по перемещению заряда не зависит от формы траектории и пройденного зарядом пути, а зависит только от начального и конечного положения заряда. Такое поле называется потенциальным , а кулоновская сила – консерва­тив­ной .

При движении заряда по замкнутой траектории (r 1 = r 2) работа равна нулю


. (4)

Интеграл

называется циркуляцией вектора напряженности .

В частном случае при перемещении заряда q 0 из точки 1 с произвольным радиусом r 1 = r в бесконечность (

)


. (5)

Существует очень удобный способ наглядного описания электрического поля. Этот способ сводится к построению сети линий, при помощи которой изображают модуль и направление напряженности поля в различных точках пространства.

Выберем в электрическом поле какую-либо точку (рис. 31,а) и проведем из нее небольшой прямолинейный отрезок так, чтобы его направление совпадало с направлением поля в точке . Затем из какой-нибудь точки этого отрезка проведем отрезок , направление которого совпадает с направлением поля в точке , и т. д. Мы получим ломаную линию, которая показывает, какое направление имеет поле в точках этой линии.

Рис. 31. а) Ломаная линия, показывающая направление поля только в четырех точках, б) Ломаная линия, показывающая направление поля в шести точках. в) Линия, показывающая направление поля во всех точках. Штриховая линия показывает направление поля в точке

Построенная таким образом ломаная не вполне точно определяет направление поля во всех точках. Действительно, отрезок точно направлен вдоль поля лишь в точке (по построению); но в какой-либо другой точке этого же отрезка поле может иметь уже несколько другое направление. Это построение будет, однако, тем точнее передавать направление поля, чем ближе друг к другу выбранные точки. На рис. 31,б направление поля изображается не для четырех, а для шести точек, и картина более точна. Изображение направления поля сделается вполне точным, когда точки излома будут неограниченно сближаться. При этом ломаная переходит в некоторую плавную кривую (рис. 31,в). Направление касательной к этой линии в каждой точке совпадает с направлением напряженности поля в этой точке. Поэтому ее обычно называют линией электрического поля. Таким образом, всякая мысленно проведенная в поле линия, направление касательной к которой в любой точке ее совпадает с направлением напряженности поля в этой точке, называется линией электрического поля.

Из двух противоположных направлений, определяемых касательной, мы условимся всегда выбирать то направление, которое совпадает с направлением силы, действующей на положительный заряд, и будем отмечать это направление на чертеже стрелками.

Вообще говоря, линии электрического поля являются кривыми. Однако могут быть и прямые линии. Примерами электрического поля, описываемого прямыми линиями, является поле точечного заряда, удаленного от других зарядов (рис. 32), и поле равномерно заряженного шара, также удаленного от других заряженных тел (рис. 33).

Рис. 32. Линии поля точечного положительного заряда

Рис. 33. Линии поля равномерно заряженного шара

При помощи линий электрического поля можно не только изображать направление поля, но и характеризовать модуль напряженности поля. Рассмотрим опять поле одного точечного заряда (рис. 34). Линии этого поля представляют собой радиальные прямые, расходящиеся от заряда во все стороны. Из места нахождения заряда , как из центра, построим ряд сфер. Через каждую из них проходят все линии поля, проведенные нами. Так как площадь этих сфер увеличивается пропорционально квадрату радиуса, т. е. квадрату расстояния до заряда, то число линий, проходящих через единицу площади поверхности сфер, уменьшается как квадрат расстояния до заряда. С другой стороны, мы знаем, что так же уменьшается и напряженность электрического поля. Поэтому в нашем примере мы можем судить о напряженности поля по числу линий поля, проходящих через единичную площадку, перпендикулярную к этим линиям.

Рис. 34. Сферы, проведенные вокруг положительного точечного заряда . На каждой из них показана единичная площадка

Если бы заряд был взят в раз большим, то и напряженность поля во всех точках возросла бы в раз. Поэтому, чтобы и в этом случае можно было судить о напряженности поля по густоте линий поля, условимся проводить из заряда тем больше линий, чем больше заряд. При таком способе изображения густота линий поля может служить для количественного описания напряженности поля. Мы сохраним этот способ изображения и в том случае, когда поле образовано не одним единичным зарядом, а имеет более сложный характер.

Само собой разумеется, что число линий, которое мы проведем через единицу поверхности для изображения поля данной напряженности, зависит от нашего произвола. Необходимо только, чтобы при изображении разных областей одного и того же поля или при изображении нескольких сравниваемых между собой полей была сохранена густота линий, принятая для изображения поля, напряженность которого равна единице.

На чертежах (например, на рис. 35) можно изображать не распределение линий поля в пространстве, а лишь сечение картины этого распределения плоскостью чертежа, что позволит получить так называемые «электрические карты». Такие карты дают наглядное представление о том, как распределяется данное поле в пространстве. Там, где напряженность поля велика, линии проводятся густо, там, где поле слабое, густота линий невелика.


Рис. 35. Линии поля между разноименно заряженными пластинами. Напряженность поля: а) наименьшая – густота линий поля минимальна; 6) средняя – густота линий поля средняя; в) наибольшая – густота линий поля максимальна

Поле, напряженность которого во всех точках одна и та же и по модулю и по направлению, называется однородным. Линии однородного поля представляют собой параллельные прямые. На чертежах однородное поле также представится рядом параллельных и равноотстоящих прямых, проходящих тем гуще, чем сильнее изображаемое ими поле (рис. 35).

Отметим, что цепочки, образуемые крупинками в опыте § 13, имеют ту же форму, что и линии поля. Это естественно, так как каждая удлиненная крупинка располагается по направлению напряженности поля в соответствующей точке. Поэтому рис. 26 и 27 подобны картам линий электрического поля между параллельными пластинами и возле двух заряженных шаров. Используя тела различной формы, можно с помощью таких опытов легко найти картины распределения линий электрического поля для различных полей.

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда .

Почему отклоняется пробный шарик?

Причина в том, что электрические заряды взаимодействуют друг с другом с помощью электрического поля, которое они создают в окружающем их пространстве. - это особый вид материи, с помощью которого это взаимодействие и происходит. Такое поле окружает каждый электрический заряд и действует на другие заряды с некоторой силой. Следовательно, электрическое поле – разновидность силового поля.

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля . Это количественная характеристика , векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

где - напряжённость электрического поля;

Сила, действующая на точечный заряд;

q – величина заряда.

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями .

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным .

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным .

Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем .

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

В общем эти линии имеют форму кривых . Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.

Силовые линии положительного точечного заряда уходят в бесконечность.

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем . В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал) . Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

В вакууме электростатический потенциал точечного заряда определяют по формуле:

где q - величина заряда, r - расстояние от заряда-источника до точки, для которой рассчитывается потенциал;

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

A = W 1 – W 2 = qψ 1 – qψ 2 = q(ψ 1 – ψ 2)

Разность потенциалов ( ψ 1 – ψ 2) в электростатическом поле называется электрическим напряжением :

U = ( ψ 1 – ψ 2) = A/ q

Электрическое поле, созданное электрическими зарядами, называют потенциальным . Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым . Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.