Генератор из асинхронного двигателя с возбуждением. Самодельный генератор. Виды асинхронных моторов

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.


В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

  • фазным;
  • или короткозамкнутым ротором.

Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.


Три отдельные обмотки статора могут быть соединены на заводе по схеме:

  • звезды;
  • или треугольника.

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.


В отдельных случаях может выполняться подключение проводов и кабеля другими способами.


К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.


Эти величины удобно выражать в векторной форме.

Особенности конструкции роторов

Двигатели с фазным ротором

Их снабжают обмоткой, выполненной по образцу статорной, а выводы от каждой соединяют с контактными кольцами, которые обеспечивают электрический контакт со схемой запуска и регулировки через прижимные щетки.

Такая конструкция довольно сложная в изготовлении, дорогая по стоимости. Она требует периодического наблюдения за работой и квалифицированного обслуживания. По этим причинам для самодельного генератора применять ее в таком исполнении нет смысла.

Однако, если имеется подобный двигатель и ему нет другого применения, то можно выводы каждой обмотки (те концы, которые подключаются к кольцам) закоротить между собой. Таким способом фазный ротор превратится в короткозамкнутый. Его можно подключать по любой рассматриваемой ниже схеме.

Двигатели с короткозамкнутым ротором

Внутри пазов магнитопровода ротора залит алюминий. Обмотка выполнена в виде вращающейся беличьей клетки (за что и получила такое дополнительное название) с замкнутыми накоротко по концам кольцами-перемычками.

Это самая простая схема двигателя, которая лишена подвижных контактов. За счет этого она длительно работает без вмешательства электриков, отличается повышенной надежностью. Ее и рекомендуется применять для создания самодельного генератора.

Обозначения на корпусе двигателя


Чтобы самодельный генератор надежно работал необходимо обращать внимание на:

  • , характеризующий качество защиты корпуса от воздействий внешней среды;
  • мощность потребления;
  • число оборотов;
  • схему соединения обмоток;
  • допустимые токи нагрузок;
  • КПД и косинус φ.

Принцип работы асинхронного двигателя в качестве генератора

В основу его воплощения заложен метод обратимости электрической машины. Если у отключенного от напряжения сети двигателя начать принудительно вращать ротор с расчетной скоростью, то в обмотке статора будет наводиться ЭДС за счет наличия остаточной энергии магнитного поля.

Остается только подключить к обмоткам конденсаторную батарею соответствующего номинала и по ним станет протекать емкостной опережающий ток, имеющий характер намагничивающего.

Чтобы происходило самовозбуждение генератора, а на обмотках формировалась симметричная система трехфазных напряжений, необходимо подобрать емкость конденсаторов, большую определенной, критической величины. Кроме ее значения на выходную мощность, естественно, влияет конструкция двигателя.

Для нормальной выработки трехфазной энергии с частотой 50 Гц необходимо поддерживать скорость вращения ротора, превышающую асинхронную составляющую на величину скольжения S, которая лежит в пределах S=2÷10%. Ее требуется поддерживать на уровне синхронной частоты.

Отход синусоиды от стандартного значения по частоте отрицательно повлияет на работу оборудования с электрическими двигателями: пилами, рубанками, различными станками и трансформаторами. На резистивных нагрузках с ТЭН и лампами накаливания это практически не сказывается.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

  • две напряжением 220 вольт;
  • одну - 380.


Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями.

На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то - 220.


Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Как рассчитать характеристики генератора по мощности двигателя и емкости конденсаторов

Для создания нормальных условий работы электрической машины необходимо соблюсти равенство ее номинального напряжения и мощности в режимах генератора и электродвигателя.

С этой целью подбирают емкость конденсаторов с учетом вырабатываемой ими реактивной мощности Q при различных нагрузках. Ее величину рассчитывают по выражению:

Q=2π∙f∙C∙U 2

Из этой формулы, зная мощность двигателя, для обеспечения полной нагрузки можно рассчитать емкость батареи конденсаторов:

С=Q/2π∙f∙U 2

Однако, следует учесть режим работы генератора. На холостом ходу конденсаторы станут излишне нагружать обмотки и нагревать их. Это приводит к большим потерям энергии, перегреву конструкции.

Для устранения подобного явления конденсаторы подключают ступенчато, определяя их количество в зависимости от приложенной нагрузки. Чтобы упростить подбор конденсаторов для запуска асинхронного двигателя в режиме генератора, создана специальная таблица.

Мощность генератора (кВА) Режим полной нагрузки Режим холостого хода
cos φ=0.8 cos φ=1 Q (кВАр) С (мкф)
Q (кВАр) С (мкф) Q (кВАр) С (мкф)
15 15,5 342 7,8 172 5,44 120
10 11,1 245 5,9 130 4,18 92
7 8,25 182 4,44 98 3,36 74
5 6,25 138 3,4 75 2,72 60
3,5 4,53 100 2,54 56 2,04 45
2 2,72 60 1,63 36 1,27 28

Для использования в составе емкостной батареи хорошо подходят пусковые конденсаторы серии K78-17 и им подобные с рабочим напряжением от 400 вольт и больше. Вполне допустимо заменить их металлобумажными аналогами с соответствующими номиналами. Собирать их придется параллельным подключением.

Использовать модели электролитических конденсаторов для работы в цепях асинхронного самодельного генератора не стоит. Они предназначены для цепей постоянного тока, а при прохождении синусоиды, меняющейся по направлению, быстро выходят из строя.

Существует специальная схема их подключения для подобных целей, когда каждая полуволна направляется диодами на свою сборку. Но она довольно сложная.

Конструктивное исполнение

Автономное устройство электростанции должно в полной мере обеспечивать работающего оборудования и выполняться единым модулем, включающим навесной электрощит с приборами:

  • измерения - вольтметром до 500 вольт и частотомером;
  • коммутации нагрузок - три выключателя (один общий подает напряжение от генератора на схему потребителей, а два остальных осуществляют подключения конденсаторов);
  • защит - , устраняющим последствия возникновения коротких замыканий или перегрузок и ), спасающее работников от пробоя изоляции и попадания потенциала фазы на корпус.

Резервирование основной схемы питания

Создавая самодельный генератор необходимо предусмотреть его совместимость со схемой заземления рабочего оборудования, а при автономной работе – надежно подключать к .

Если электростанция создается для резервного питания приборов, работающих от государственной сети, то использовать ее следует при отключении напряжения с линии, а при восстановлении - останавливать. С этой целью достаточно установить рубильник, управляющий всеми фазами одновременно или подключить сложную систему автоматики включения резервного питания.

Выбор напряжения

Схема на 380 вольт обладает повышенной опасностью поражения человека. Ее используют в крайних случаях, когда фазной величиной на 220 обойтись нет возможности.

Перегрузки генератора

Такие режимы создают излишний нагрев обмоток с последующим разрушением изоляции. Они возникают при превышении токов, проходящих по обмоткам из-за:

  1. неправильного подбора емкости конденсаторов;
  2. подключения потребителей повышенной мощности.

В первом случае необходимо тщательно следить за тепловым режимом во время холостого хода. При излишнем нагреве требуется корректировать емкость конденсаторов.

Особенности подключения потребителей

Общая мощность трехфазного генератора состоит из трех частей, вырабатываемых в каждой фазе, которая составляет 1/3 от общей. Ток, проходящий по одной обмотке, не должен превышать номинальную величину. Это надо учитывать при подключении потребителей, распределять их равномерно по фазам.

Когда самодельный генератор создан для работы от двух фаз, то он не может безопасно выработать электроэнергии больше, чем на 2/3 от общей величины, а если задействована всего одна фаза, то - только 1/3.

Контроль частоты

Следить за этим показателем позволяет частотомер. Когда его в конструкцию самодельного генератора не установили, то можно пользоваться косвенным методом: на холостом ходу выходное напряжение превышает номинальное 380/220 на 4÷6% при частоте 50 Гц.

Один из вариантов изготовления самодельного генератора из асинхронного двигателя и его возможности показывают в своем видеоролике владельцы канала Мария с Александром Костенко.

(13 голосов, в среднем: 4.5 из 5)

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

  • В качестве двигателя для ;
  • В виде небольших ГЭС.

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости. Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.

Виды и описание асинхронного двигателя

Существует два вида моторов:

  1. Короткозамкнутый ротор . Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Область применения

Устройство используется в разных отраслях:

  1. Как обычный двигатель для электростанций, работающих от ветра.
  2. Для собственного независимого питания квартиры либо дома.
  3. Как небольшие ГЭС-станции.
  4. Как альтернативный инверторный тип генератора (сварочный).
  5. Для создания бесперебойной системы питания от переменного тока.

Преимущества и недостатки генератора

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Принцип работы

Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.

Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.

Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.

Получить подобный результат можно, подключив прибор к электросети, с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.


Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С 0 , которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.


Делаем своими руками

Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.

В трехфазном моторе подключить конденсатор можно по таким схемам:

  • «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
  • «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.

Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.


Необходимые инструменты

Создать собственный генератор несложно, главное иметь все необходимые элементы:

  1. Асинхронный мотор.
  2. Тахогенератор (прибор для измерения тока) или же тахометр.
  3. Емкость под конденсаторы.
  4. Конденсатор.
  5. Инструменты.

Пошаговое руководство

  1. Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора , первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
  2. Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
  3. Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.

Таблица конденсаторных емкостей

Мощность генератора КВ А Холостой ход
Емкость Мкф Реактивная мощность Квар COS=1 COS=0.8
Емкость Мкф Реактивная мощность Квар Емкость Мкф Реактивная мощность Квар
2,0 28 1,27 36 1,63 60 2,72
3,5 45 2,04 56 2,54 100 4,53
5,0 60 2,72 75 3,4 138 6,25
7,0 74 3,36 98 4,44 182 8,25
10,0 92 4,18 130 5,9 245 11,1
15,0 120 5,44 172 7,8 342 15,5

Важно! Если емкость будет большой, то генератор начнет нагреваться.

Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.

Важно! Все конденсаторы должны быть заизолированы специальным покрытием.

Устройство готово и может использоваться в качестве источника электроэнергии.

Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги , исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.


Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Преимущество конденсаторов в том, что они не требуют дополнительного обслуживания, а энергию получают от магнитного поля ротора или производимого электрического тока. Из этого можно сказать, что единственный плюс от этой разработки – отсутствие необходимости в обслуживании.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

  1. Устройство очень опасно, поэтому не рекомендуется использовать напряжение в 380 В , разве что при крайней необходимости.
  2. Согласно с мерами предосторожности и техникой безопасности необходимо дополнительно установить заземление.
  3. Следите за тепловым режимом разработки. Ему не присуще работать при холостом ходу. Чтобы уменьшить тепловое воздействие следует хорошо подобрать конденсаторную емкость.
  4. Правильно просчитайте мощность производимого электрического напряжения. Например, когда в трехфазном генераторе функционирует лишь одна фаза, значит, мощь составляет 1/3 от общей, а если работает две фазы соответственно 2/3.
  5. Есть возможность косвенным образом контролировать частоту непостоянного тока. Когда прибор работает вхолостую выходящее напряжение начинает увеличиваться, и превышает показатели промышленного (220/380В) на 4-6%.
  6. Лучше всего изолировать разработку.
  7. Следует оснастить самодельное изобретение тахометром и вольтметром , чтобы фиксировать его работу.
  8. Желательно предусмотреть специальные кнопки для включения и выключения механизма.
  9. Уровень КПД будет понижаться на 30-50% , данное явление неизбежно.

Существующие организации, снабжающие электроэнергией, неоднократно доказывают свою некомпетентность в обслуживании потребителей, и все чаще люди сталкиваются с проблемами подачи электроэнергии. Чаще всего с перебоями в электросети или даже отсутствием электроэнергии сталкиваются владельцы особняков и дач за пределами города. В связи с этим люди запасаются керосиновыми лампами, свечами и бензиновыми генераторами.

Но не всегда есть возможность приобрести себе хороший генератор, и жители вынужденно сталкиваются с вопросом, как сделать генератор своими руками, потратив на это намного меньше, чем на заводской агрегат.

Принцип работы генератора

Пользуясь большим спросом, генератор может быть на базе бензинового или дизельного двигателя. В большинстве случаев главным прибором выработки электроэнергии выступает асинхронный двигатель, с помощью которого производится энергия для рабочей электросети. Бензогенератор с асинхронным двигателем работает с большим КПД , а обороты ротора асинхронного двигателя выше, чем у самого мотора.

Установки с применением асинхронного двигателя применяются не только в бытовых условиях, но и во многих других силовых установках , таких как:

  • Ветровые электростанции.
  • Для работы сварочного аппарата.
  • Для поддержки электроэнергии совместно с небольшой ГЕС.

В большинстве случаев запуск происходит за счет подключения тока, однако, для мини-станций это не совсем рационально, так как генератор должен вырабатывать электроэнергию, а не потреблять. В связи с таким недостатком все чаще производителями предлагаются самовозбуждающиеся устройства , для запуска которых необходимо только последовательное подключение конденсатора.

Благодаря тому, что скорость оборотов ротора асинхронного генератора выше, чем самого мотора, он может производить электроэнергию. В самых обычных моделях генераторов для выработки электричества должно быть не менее 1500 оборотов в минуту.

Превосходство скорости работы ротора при запуске перед синхронной скоростью называют скольжением и вычисляют в процентах от синхронной скорости, но так как статор вращается с большими оборотами , чем ротор, то происходит образование потока заряженных электронов с переменной полярностью.

При запуске подключенный прибор управляет синхронной скоростью и впоследствии - скольжением. При выходе из статора электроны перемещаются по ротору, но активная энергия уже находится в катушках статора.

Принцип работы двигателя заключается в преобразовании механической энергии в электрическую, а для пуска и выработки тока необходим сильный вращательный момент . Наиболее подходящим вариантом, по мнению электриков, является поддержка оптимальной скорости на протяжении всего времени работы генератора.

Преимущества асинхронного генератора

Синхронные и асинхронные генераторы имеют разную конструкцию. Конструкция синхронного более сложная, чувствительность к перепадам напряжения больше, поэтому продуктивность ниже, чем асинхронного. На роторе синхронного мотора размещены магнитные катушки, они усложняют вращение ротора , а ротор асинхронного генератора имеет схожесть с обычным маховиком.

Потеря КПД синхронного генератора из-за конструктивной особенности около 11%, в то время как у асинхронного - потеря до 5%. Поэтому асинхронные устройства более востребованы и в быту, и в промышленности. Нарастание спроса обусловлено не только высоким КПД, но и другими преимуществами:

  • Простая конструкция корпуса, способного защитить от попадания влаги и пыли, что снижает необходимость ежедневного проведения ТО.
  • Устойчивость к перепаду напряжения и наличие выпрямителя, который служит защитой для подключенных электроприборов.
  • Способен питать высокочувствительные приборы, к примеру, сварочные устройства, компьютеры и лампы накалывания.
  • Высокий КПД и минимальная затрата энергии на обогрев самого агрегата.
  • Длительный срок эксплуатации благодаря надежности деталей и их устойчивости к износу при использовании.

Благодаря таким положительным нюансам генератор может эксплуатироваться на протяжении 15 лет, а его конструкция позволяет сделать асинхронный генератор своими руками.

Мотоблок для электрогенератора

Для жителей сел и поселков за городом использование мотоблока для сборки генератора не является новшеством, так как агрегат очень распространен, и многие проводят земельные работы с его помощью, хотя мотоблок, как другая техника, нередко подвергается поломкам .

При больших повреждениях агрегата владельцы покупают новый, но со старым расстаться хочет не каждый, поэтому старые экземпляры могут использоваться для самостоятельного конструирования генератора переменного тока 220 В. Работой двигателя может обеспечиваться оптимальная производительность асинхронного двигателя в пределах вольтажа от 220 до 380. Мощность двигателя нужно выбирать не менее 15 кВт, а частота оборотов вала должна быть от 800 до 1500 об/мин. Такие характеристики необходимы для полного обеспечения электросети жилища. Ведь с маломощным двигателем получить достаточно энергии не выйдет, а создавать генератор для нескольких осветительных приборов нерационально.

Существуют мастера, которые изготавливают ветрогенератор из асинхронного двигателя своими руками, но в любом случае перед сборкой нужно сначала рассчитать мощность потребления электроэнергии зданием. Ведь в небольших дачных домиках может быть один телевизор или дрель, для которых будет достаточно мощности электрогенератора, переделанного из обычной бензопилы.

Подготовка материала и сборка

Покупка асинхронного двигателя грозит большой потерей финансов, а для самостоятельной сборки могут понадобиться минимальные навыки в электрике, детали и инструменты. Но если принято решение сделать генератор переменного тока 220 В своими руками, то к этому необходимо подготовиться:

  1. Для нормальной работы генератора скорость вращения ротора должна быть больше чем обороты двигателя. Поэтому нужно отключить двигатель к сети и вычислить скорость вращения ротора, для этого можно использовать тахометр.
  2. Вычислить рабочую частоту оборотов будущего генератора. К примеру: обороты двигателя - 1200 об/мин, а рабочие обороты генератора будут - 1320 об/мин. Такое значение можно вычислить, добавив к оборотам двигателя 10% показателя тахометра;
  3. Для функционирования асинхронного двигателя необходимы конденсаторы одинаковой емкости для подключения между фазами.
  4. Емкость конденсаторов не должна быть сильно завышенной, иначе неизбежен сильный перегрев генератора.
  5. Конденсаторы должны быть изолированы и обеспечивать высчитанную скорость вращения ротора генератора.

Такое простое устройство уже можно использовать в качестве источника электроэнергии, но так как устройством производится высокое напряжение, то его лучше применять с понижающим трансформатором.

Бензиновый агрегат

Для сборки бензинового прибора необходима установка мотоблока и электродвигателя на одной станине с учетом параллельного расположения валов. Посредством двух шкивов будет передаваться вращательный момент от мотоблока к двигателю. Один шкив нужно установить на вал бензинового агрегата, а второй на электромотор. Благодаря правильному соотношению размера шкивов будет определяться частота оборотов ротора мотора.

После установки всех деталей и подключения ременной передачи можно приступить к электрической части:

  1. Обмотку электромотора необходимо соединить по схеме «звезда».
  2. Подключенные конденсаторы к фазам должны образовать треугольник.
  3. Между концом обмотки средней точкой образуется 220 В, а 380 - между обмотками.

Емкость устанавливаемых конденсаторов подбирается в зависимости от мощности электродвигателя. Устройством вырабатывается электроэнергия, а значит, нужно сделать заземление, в противном случае аппарат может быстро изнашиваться или стать причиной поражения током человека.

В качестве устройства с небольшой мощностью можно использовать однофазный двигатель от стиральной машины, дренажного насоса или другого бытового прибора. Так же как и трехфазный мотор, он должен подключаться параллельно обмотке. Также при конструировании можно использовать конденсатор фазового сдвига, но мощность придется увеличивать до нужного предела.

Такие простые приборы с однофазным мотором можно использовать для освещения дома или подключения маломощных электроприборов. При этом переделка схемы может позволить подключение аппарата к обогревателю или электропечи. Таким же образом могут изготавливаться подобные устройства с использованием неодимовых или других постоянных магнитов.

Достоинства самодельной конструкции

Главным и важным достоинством является экономия. Для самодельного варианта потребуется намного меньше денежных вложений, чем заводские аналоги.

При грамотном проведении сборки своими руками электрооборудование может быть довольно надежным и продуктивным в эксплуатации.

Единственным недостатком такого устройства является то, что для новичка может быть затруднительно разобраться во всех тонкостях сборки и изготовления прибора. При неправильном подключении и сборки возможны необратимые поломки, после чего потраченное время и деньги уйдут впустую.

Гидро- и ветростанции

Кроме бензиновых устройств, существуют и другие конструкции. Привести в движение вал электромотора можно с помощью ветряка или водяного потока. Конструкции не являются самыми простыми, но благодаря им, можно обойтись без использования бензинового или дизельного топлива.

Такое устройство, как гидрогенератор, можно собрать самостоятельно. При наличии протекающей реки возле дома воду можно применить как силу, вращающую вал. При этом в русло реки устанавливается гидроколесо с лопастями. Таким образом создается течение, вращающее турбину и вал электромотора, а в зависимости от количества установленных турбин и лопастей будет увеличиваться или уменьшаться поток воды и напряжение генератора.

Устройство ветрового агрегата немного сложнее, так как ветровая нагрузка не является постоянной величиной. Обороты ветряка, которые передаются на вал мотора должны регулироваться в зависимости от необходимой частоты оборотов электромотора. Регулятором в этом механизме выступает редуктор. Сложность конструкции заключается в том, что при повышении ветра необходим понижающий редуктор, а при понижении ветра - повышающий.

Все асинхронные устройства, вырабатывающие электроэнергию, имеют повышенный уровень опасности, в связи с этим им нужна изоляция. С таким оборудованием необходимо обращаться очень аккуратно и держать его скрытым от воздействия внешних погодных условий:

  • Автономные устройства оснащаются измерительными датчиками для фиксации данных о работе. Рекомендуется установка тахометра и вольтметра.
  • Установка выключателя или отдельных кнопок включения и выключения.
  • Агрегат заземляется в обязательном порядке.
  • КПД асинхронного устройства может снижаться на 30−50%, что является неизбежным явлением при преобразовании электрической энергии из механической.
  • Необходимо следить за температурой установки и режимом работы, так как аппарат может перегреваться на холостом ходу.

Придерживайтесь таких простых правил в эксплуатации, и прибор будет служить на протяжении длительного времени и не предоставит неудобств.

Хотя самодельное приспособление и является простым в сборке, оно при этом требует определенных усилий, сосредоточенности при работе с конструкцией и правильным подключением электросети. Устройство такого типа целесообразно собирать в финансовом плане при наличии работоспособного неиспользуемого двигателя. В противном случае основной элемент прибора будет стоить половину цены рыночной установки. Ветровой или другой генератор лучше собирать из проверенных и работоспособных частей для повышения срока эксплуатации генератора.