Сложные полиэфиры. Технология производства сложных полиэфиров Технологическая схема получения сложных полиэфиров

Поликонденсация –это реакция образования макромолекулы из би- или полифункциональных соединений, сопровождающаяся отщеплением низкомолекулярных продуктов (воды, аммиака, спирта, хлороводорода и т.п.).

Например, nNH 2 ─(CH 2) 5 ─COOH → [─NH─C──(CH 2) 5 ─] n + nН 2 О

Аминокапроновая кислота капрон

При поликонденсации адипиновой кислоты с гексаметилендиамином по схеме

nHOOC─(CH 2) 4 ─COOH + nNH 2 ─(CH 2) 6 ─NH 2 → [─NH─CO─(CH 2) 4 ─C─NH─(CH 2) 6 ─] n

Адипиновая кислота гексаметилендиамин найлон

Поликонденсация, в которой участвуют вещества с тремя и более функциональными группами, проводят, в конечном счете, к образованию трехмерных сетчатых структур. Такие процессы называют трехмерной поликонденсацией . Примером может служить образование фенолформальдегидных смол (резитов) из фенола и формальдегида:

Поликонденсация – обратимый процесс, поэтому для получения полимеров большого молекулярного веса необходимо в ходе реакции удалять из реакционной среды низкомолекулярный продукт.

Классификация органических полимеров

Типы и виды полимеров. В зависимости от формы и строения молекул полимеры могут быть линейными, разветвленными и сетчатыми. Если звенья высокомолекулярных соединений полностью идентичны по химическому составу, то такие соединения называют гомополимерами . Наоборот, если в одной и той же молекуле сочетаются звенья различного химического состава, то такие полимеры называют сополимерами. Гомополимеры и сополимеры могут быть регулярными и нерегулярными. Под регулярностью следует понимать такой порядок сочетания одних и тех же или разных по химическому составу звеньев, при котором любыми перемещениями возможно пространственно совместить любые участки или отрезки цепной молекулы полимера. Наличие асимметричного атома углерода или кратной связи в химическом звене полимерной молекулы может привести к различным типам их сочетаний в пределах одной и той же молекулы и тем самым к нарушению ее регулярности. Этому же содействует возникновение разветвленности молекул., если такое разветвление статистическое и размеры боковых ответвлений различны.

Особенно большое значение приобрела полимеризация стереорегулярных полимеров, имеющих строго определенное регулярно повторяющееся расположение в пространстве звеньев макромолекулы.

При полимеризации олефинов типа СН 2 =СН─R элементарные звенья в молекулярной цепи могут соединяться различно:

а) «голова к голове» и «хвост к хвосту»



nCH 2 =CH→ ...─ CH 2 ─CH─CH─ CH 2 ─ CH 2 ─CH─CH─...

│ │ │ │ │

б) «голова к хвосту»

nCH 2 =CH→ ...─ CH 2 ─CH─CH 2 ─ CH─ CH 2 ─CH─…

в) с произвольным (беспорядочным) расположением замещающих групп

nCH 2 =CH→ ...─ CH 2 ─CH─CH─ CH 2 ─ CH 2 ─CH─CH 2 ─СН─…

Стереорегулярные полимеры построены по схеме «голова к хвосту», при этом третичные атомы углерода в полимере становятся ассиметричными.

Для полимеров возможна классификация, связанная с характером изменений в них в результате термической обработки. Если, например, в процессе такой обработки в определенных температурных условиях происходят лишь физические изменения в веществе (понижается вязкость, полимер переходит в текучее пластическое состояние), то такие полимеры называются термопластическими. Если же в процессе обработки протекают реакции химического связывания цепных молекул друг с другом сообразованием полимера сетчатого строения, то такие полимеры называют термореактивными.

При классификации органических полимеров по химическому составу вещества учитывается характер атомов, составляющих саму цепь без учета боковых атомов или групп. Исходя из этого органические полимеры могут быть разделены на три класса:

1)Карбоцепные

2)Гетероцепные

3)Элементорганические

В первый класс входят органические полимеры , цепи которых состоят только из атомов углерода. К ним относятся полиолефины, полимеры винилового ряда, полимеры дивинилового ряда, циклические карбоцепные полимеры В этот класс входят основные типы синтетических каучуков, полиэтилен, полипропилен, поливинилхлорид и сополимеры полистирол, полиметилметакрилат (органическое стекло), полиакриловые полимеры, фенолформальдегидные смолы.

Второй большой класс органических полимеров составляют гетероцепные полимеры, в саму цепь которых, кроме атомов углерода, входят также атомы кислорода, азота, серы или фосфора. К гетероцепным полимерам относятся полимерные простые эфиры (глифтали, поликарбонаты, полиэтилентерефталат), полиамиды, полиуретаны. К этой группе относятся целлюлоза, крахмал, белки и нуклеиновые кислоты.

Элементорганические полимеры - в цепь которых кроме углерода входят атомы других элементов. Наибольшее значение из этого класса полимеров приобрели полимерные кремнийорганические соединения, обладающие рядом весьма ценных свойств и широко используемые в качестве термо- и морозостойких масел, эластомеров пластических масс, покрытий, цементирующих составов. Химическое звено может быть представлено следующим образом R

│ │ │ │ │

─Si─С─ ─ Si─О─С─ ─ Si─

│ │ │ │ │

Аморфные полимеры. Для высокомолекулярных аморфных тел возможны три состояния – стеклообразное, высокоэластичное и вязко-текучее.

Как следует из рис. кривая указанной зависимости для полимеров делится на ряд участков. Первой самой низкой температурной точкой является температура хрупкости (Т х) полимера. Затем при повышении температуры, если полимер подвергается малым нагрузкам, его деформация не обнаруживается вплоть до температуры стеклования (Т с, выше которой возникают высокоэластические свойства, сохраняющиеся до точки Т т. Дальнейшее повышение температуры приводит к переходу полимера из высокоэластического а вязко-текучее состояние (Т т), И, наконец, при последующем повышении температуры начинается термическая декструкция полимера при температуре его разложения Т р Чем выше температура химического разложения полимера, тем выше его термостойкость.

Стеклообразное состояние аморфных полимеров – состояние, соответствующее температурному интервалу между точками хрупкости (Т х) и стеклования (Т с), в котором вследствие высокой вязкости вещество обладает свойствами твердого тела. Полимерные вещества в стеклообразном состоянии при воздействии больших сил характеризуются повышенными эластическими свойствами, связанными некоторой подвижностью звеньев полимерных цепей. При температуре ниже Т х полностью теряется подвижность звеньев и сегментов цепных молекул под действием больших сил и, следовательно, утрачивается вынужденная эластичность полимера.

Т х а Т с б Т т в Т р

Схема температурной кривой деформации

линейного аморфного полимера

а-стеклообразное состояние, б-высокоэлас-

тическое, в-вязко-текучее

ε -деформация

Высокоэластическое состояние полимеров – это состояние, соответствующее температурному интервалу между точками стеклования (Т с) и текучести (Т т), при котором вязкость понижается и проявляются высокоэластические свойства упругого тела. Понижение вязкости обусловлено уменьшением числа контактов между цепными молекулами в данном температурном интервале, в результате чего возникает подвижность сегментов, обусловливающая высокоэластические свойства полимера.

Вязко-текучее состояние – это состояние полимеров в температурной области между Т т и Т р, в котором пониженная вязкость вещества обусловливает возникновение в полимерах свойств вязкой жидкости, в которой молекулы постепенно из согнутых конформаций переходят в вытянутое состояние, в результате чего увеличивается межмолекулярное взаимодействие между ними.

На основе полимеров приготовляют пластмассы и композиционные материалы, которые содержат несколько компонентов и добавок.

Зависимость деформации аморфного

полимера от времени при действии по-

стоянной нагрузки

Пластмассы – материалы современной техники

Пластмассами называют материалы, основой которых являются природные или синтетические полимеры (ВМС). Пластические массы в процессе переработки легко в пластическое состояние и под действием внешних сил принимают заданную форму, устойчиво сохраняя ее. Пластмассы представляют многокомпонентные системы, в состав которых входят: связующее вещество (синтетические смолы и др.), наполнители, пластификаторы, катализаторы, стабилизаторы, красители, порообразователи и проч.

Наполнителями являются органические или минеральные материалы. Применение наполнителей позволяет получить требуемые свойства и удешевить стоимость материалов из пластмасс. Например, асбест, стекловолокно повышают диэлектрические свойства, теплостойкость пластических масс. Волокнистые наполнители (асбест, целлюлоза, стекловолокно) увеличивают прочность пластмасс. Их добавляют в количестве 40-70% (по массе).

Пластификаторы вводят от 10 до 100% от массы смолы для уменьшения хрупкости и улучшения формуемости. Эти пластификаторы уменьшают межмолекулярное взаимодействие, как бы разъединяют макромолекулы полимера, облегчая движение их относительно друг друга. Пластификаторы снижают температуру перехода в стеклообразное состояние, повышая пластичность материала и его морозостойкость. В качестве пластификаторов служат эфиры и ВМС, например синтетический каучук, если они хорошо совмещаются с полимерами.

По виду связующих веществ пластмассы можно разделить на четыре класса:

2) продукты полимеризации;

3) продукты поликонденсации;

4) модифицированные природные полимеры;

5) природные и нефтяные асфальты и битумы

По структуре пластмассы также подразделяются на четыре класса:

1) ненаполненные (без наполнителя);

2) газонаполненные –пено- и поропласты;

3) наполненные с порошкообразными наполнителями;

4) пластмассы составных структур.

Пластмассы отличаются небольшой теплопроводностью, водостойкостью, химической стойкостью. Они способны хорошо окрашиваться, сопротивляться истиранию, обладают высокими оптическими показателями. Важным качеством пластмасс является легкость их производственной обработки – применение литья, прессования, сверления, фрезерования, обточки и т.п. Пластмассы весьма ценны в качестве гидроизоляционных и газоизоляционных конструкций. Они способны образовывать тонкие и прочные полимерные пленки. К недостаткам пластмасс следует отнести их небольшую теплостойкость, малую поверхностную твердость, горючесть, ползучесть (при нагревании).

Применение пластмасс в дорожном деле и строительстве

Традиционными строительными материалами являются бетон, железо, дерево и алюминий. Доля пластмасс пока еще невелика, но тенденция к повсеместному ее увеличению наблюдается повсюду. Стела, окна, рамы, устойчивые к внешним воздействиям, трубы из полихлорвинила, трубопроводы для транспортировки газа под давлением и агрессивных химических соединений – с этой целью применяют полиэтилен, полиэфиры, полибутилен. Для заполнителей швов и герметизации зазоров между бетонными деталями используют полиуретаны, силиконы, акрилаты, эпоксидные смолы.

nO=C─N─(CH 2) 6 ─N─C=O + nHO─(CH 2) 4 ─OH → (─C─NН─(CH 2) 6 ─NH─C─O─(CH 2) 4 ─O─) n

Гексаметилендиизоцианат бутандиол полиуретан

Очень перспективны для строительства пенопласты, полимерные волокнистые материалы, выполняющие функции армирующих, фильтрующих материалов, а также полимерцементы, полимербетоны, стеклопластики. Полимерцементы –это материалы на основе цемента или гипса с введением полимеров или латексов, что улучшает физические и другие свойства вяжущих. Поимерными добавками служат полиэфиры, поликарбамиды, эпоксиды и др.

nНООС─С 6 Н 4 ─СООН + nНО─(СН 2) 2 ─ОН → (─О─С─ С 6 Н 4 ─С─О─(СН 2) 2 ─О─) n

Терефталевая кислота этиленгликоль полиэтиленгликольтерефталат

Полимербетоны состоят из минеральных заполнителей в виде песка, щебня и полимерных вяжущих, например, фенолформальдегидных, эпоксидных, поливинилацетатных видов. По свойствам поимербетоны превосходят обычные бетоны химической стойкостью, высокой прочностью, морозостойкостью.

Стеклопластики, используемые в качестве конструкционных материалов, состоят из полимера (полиэфиры, фенолформальдегидные и др.) и заполнителя (волокна, ткани и нити из стекла).

Полимерные пленки –один из видов стройматериалов получают на основе полиэтилена низкого давления и полипропилена.

nCH 2 =CH 2 → (─CH 2 ─ CH 2 ─) n

полиэтилен низкого давления

nCH 2 =CH 2 → (─CH 2 ─ CH─) n

СН 2 ─СН 2 ─

полиэтилен высокого давления

Пленки используются для защиты гидросооружений, фундаментов, туннелей, плотин и т.д.

Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности. Полученный полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит. Техническая задача - упрощение технологии получения полиэфира, снижение температуры плавления получаемого полимера и сохранение прочности композиционных материалов на основе данного полиэфира. Предложен способ получения полиэфира поликонденсацией между субериновыми кислотами (СК), адипиновой (АК) или себациновой (СебК) кислотой и диамином, выбранным из п-фенилендиамина (п-ФД), о-фенилендиамина (о-ФД) и гексаметилендиамина (ГМДА) при массовом соотношении СК:(АК или СебК):(п-ФД, или о-ФД, или ГМДА)=10:(2-4):(3,1-6,2), причем процесс проводят при температуре 150-220°С в течение 1,5-2,5 часа. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области полимерной химии и утилизации отходов лесохимической промышленности, а именно к способу получения полиэфира, методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой. Получаемый полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит.

Субериновые кислоты представляют собой смесь алифатических C 18 -С 32 моно- и дикарбоновых насыщенных и ненасыщенных окси- и эпоксикислот. Наличие всех этих функциональных групп дает возможность использовать их в качестве мономеров при получении высокомолекулярных соединений по методу поликонденсации.

Таблица 1

Состав субериновых кислот

Кислота % по массе
Октадекан-9-ен-1,18-диовая 2,1-3,9
Октадекан-1,18-диовая 0,5-1,5
18-Гидроксиоктадец-9-еновая 6,0-17,1
9,16- и 10,16-Дигидроксигексадекановая 2,3-6,2
9,10-Эпокси-18-гидроксиоктадекановая 29,2-43,2
20-Гидроксиэйкозановая 2,3-4,4
9,10,18 - Тригидроксиоктадекановая 6,3-11,4
Докозан-1,22-диовая 3,6-7,4
22-Гидроксидокозановая 11,7-17,4
Прочие 9,5-14,7

В таблице 1 приведены кислоты с наибольшим содержанием в бересте (Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Химия древесины. - 1994. - №3. - C.11).

В уровне техники известны исследования в области получения полимеров на основе субериновых кислот, а именно: лаковых смол, получаемых методом конденсации бетулино-субериновых смесей с фталевым ангидридом (Поварнин И.Г. Спиртовые мебельные лаки отечественного лесохимического сырья. - М., 1949, с.78-80).

Существенным недостатком данного способа является то, что он требует большого количества времени и энергозатрат (продолжительность процесса конденсации составляет 16 часов, при температуре 170°С), что в свою очередь делает данный способ получения полимера экономически невыгодным. Дополняющим недостатком данных полимеров является то, что такие смолы после холодной сушки обладают плохими адгезионными свойствами, а после горячей сушки оказываются очень хрупкими.

Известны также полиуретаны, получаемые на основе субериновых кислот (Cordeiro N., Belgacem M.N., Candini A., Pascoal Neto С., Urethanes and polyurethanes from suberin: 1.Kinetic study// Industrial Crops and Products, Vol.6, Iss.2. - 1997. - P.163-167).

Недостатком таких полимеров является то, что они высокоэластичны и их переработка возможна только через растворы, что резко снижает их область применения в качестве связующих.

Также известны смолы, приготовляемые на основе этерифицированных бетулином субериновых кислот (Поварнин И.Г. Спиртовые мебельные лаки из отечественного лесохимического сырья. М., Всесоюзное кооперативное изд-во, 1949, с.71-73). Такие смолы хорошо растворяются в ряде органических растворителей, таких как скипидар, бензол, спиртбензол, ацетаты, этилметилкетон, и имеют хорошую адгезию к стеклу и металлу. Однако существенным недостатком этих смол является плохая адгезия к дереву, что исключает возможность их применения в производстве ДВП и ДСП.

Наиболее близким аналогом к заявляемому изобретению является способ получения полиэфира путем поликонденсации бетулина с дикарбоновой кислотой в инертной среде (азот) при постоянном перемешивании в диапазоне температур 256-260°С и продолжительности процесса 22-24 часа (патент РФ №2167892, МПК C 08 G 63/197, опубл. в Бюлл. изоб. №15, 27.05.2001; Орлова Т.В., Немилов В.Е., Царев Г.И., Войтова Н.В. Способ получения полиэфира). Температура плавления данных полиэфиров составляет 200-230°С. Древесно-волокнистые композиты на основе данных полиэфиров обладают прочностью на растяжение 65-77 МПа.

Недостаток данного способа получения связующего состоит в том, что он является достаточно энергоемким, поскольку температура процесса конденсации составляет 256-260°С и продолжительность соответственно 22-24 часа.

Техническим результатом настоящего изобретения является упрощение технологии получения полиэфира за счет снижения температуры поликонденсации и снижения продолжительности процесса при одновременном снижении температуры плавления полученного полимера, а также при одновременном сохранении прочности композиционных материалов на основе данного полиэфира.

Поставленная цель достигается тем, что в заявляемом способе получения полиэфира, заключающемся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде (азот), процесс поликонденсации осуществляют между: субериновыми кислотами (СК), адипиновой кислотой (АК), n-фенилендиамином (n-ФД), себациновой кислотой (СебК), о-фенилендиамином (о-ФД), гексаметилендиамином (ГДА) при массовом соотношении СК: АК или СебК: n-ФД, или о-ФД, или ГДА - 10:(2÷4):(3,1÷6,2), причем процесс проводят при температуре 150-220°С и продолжительности процесса 1,5-2,5 часа.

Существенными отличиями заявляемого изобретения является использование в определенном соотношении с субериновыми кислотами дикарбоновой кислоты и диамина, в качестве которых используются адипиновая кислота или себациновая кислота и n-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин. Выбор адипиновой кислоты и себациновой кислоты обусловлен тем, что они способны конденсироваться в линейную макромолекулу и тем самым препятствовать образованию пространственной сетки при поликонденсации субериновых кислот, а n-фенилендиамин, о-фенилендиамин и гексаметилендиамин были выбраны с целью регулирования температуры плавления и жесткости цепи полимера.

Согласно заявляемому техническому решению поликонденсация мономеров происходит за счет взаимодействия реакционноспособных групп субериновых кислот, таких как карбоксильные, гидроксильные и эпоксидные группы между собой и с аминогруппами n-фенилендиамина (о-фенилендиамина или гексаметилендиамина) и карбоксильными группами адипиновой кислоты (себациновой кислоты), эти взаимодействия можно изобразить с помощью следующих реакций.

Из представленных выше реакций отчетливо видно, что в структуре получаемого полимера образуются простые эфирные связи (реакция 2), сложные эфирные связи (реакция 1), амидные связи (реакция 4) и аминные связи (реакция 5).

Таким образом получены новые полиэфироамиды, сополимеры субериновых кислот, адипиновой кислоты (или себациновой) и n-фенилендиамина (или о-фенилендиамина, или гексаметилендиамина), обладающие разветвленной структурой и степенью превращения до 0,99.

Заявляемый способ реализуется следующим образом.

Пример 1. В реактор загружаются субериновые кислоты, адипиновая кислота и n-фенилендиамин в соотношении СК:АК:ПФД, равном 10:2:3,1, подается азот, после чего реактор нагревается до 150°С, и реакцию поликонденсации проводят в течение 1,5 часа при перемешивании, после окончания процесса полученный полимер выгружается.

В таблице 2 приведены параметры и показатели процесса и характеристики готовой продукции.

Преимущество предлагаемого изобретения по сравнению с прототипом заключается в том, что процесс поликонденсации субериновых кислот с бифункциональными веществами, такими как адипиновая, себациновая кислоты, n-фенилендиамин, о-фенилендиамин и гексаметилендиамин, осуществляется при более низкой температуре (до 220°С) и продолжительности процесса 1,5-2,5 часа, что значительно упрощает технологию процесса синтеза полимера. Дополнительным преимуществом является то, что температура плавления полученных полиэфироамидов ниже, чем у прототипа, и составляет 133-149°С.

Полученные полиэфиры с показателями по степени превращения 0,80-0,99 и температурой плавления 133-149°С берут в соотношении 20:80 с древесным волокном, прессуют при t - 200°С и давлении 6 МПа в течение 1 мин/мм толщины. Готовая продукция (древесно-волокнистые плиты) обладают прочностью 77-83 МПа, что в 1,5-2 раза выше показателя ГОСТ на промышленно выпускаемые аналоги. Прочность оценивалась по методике ГОСТ 11262-80.

Из экспериментальных данных, приведенных в таблице 2, видно, что в сравнении с прототипом по заявляемому способу получен полиэфир с температурой плавления 133-149°С, что дает возможность его использования в качестве связующего в технологии полимерных композиционных материалов. Получаемые таким образом материалы обладают высокими прочностными свойствами, не уступающими прототипу.

Из таблицы 2 видно, что при повышении температуры процесса поликонденсации (примеры №1-3) степень превращения полученного полиэфира увеличивается, а также увеличивается прочность древесно-волокнистых плит.

При увеличении продолжительности процесса (примеры №2, 4, 5) также наблюдается возрастание степени превращения и температуры плавления получаемых полиэфиров, при этом прочность плит лежит в диапазоне, соответствующем прочности плит, получаемых по прототипу.

Изменение соотношения компонентов (примеры №1, 7, 12) во всем диапазоне заявляемых температур и продолжительности процесса позволяет получить плиты с прочностью, равной прочности плит, соответствующих прототипу.

Таблица 2

Параметры процесса поликонденсации и характеристики получаемых полимеров

№/№ Соотношение компонентов, мас.% Температура,Продолжительность процесса, ч Степень превращения Температура плавления, °С Прочность плит, МПа
Субериновые кислоты: адипиновая кислота: n-фенилендиамин
1 10:2:3,1 150 1,5 0,85 139 77
2 10:2:3,1 180 1,5 0,87 142 78
3 10:2:3,1 220 1,5 0,88 143 79
4 10:2:3,1 180 2 0,90 146 79
5 10:2:3,1 180 2,5 0,95 148 83
6 10:3:4,6 150 1,5 0,83 138 77
7 10:3:4,6 180 1,5 0,88 143 78
8 10:3:4,6 220 1,5 0,94 148 83
9 10:3:4,6 150 2 0,86 140 78
10 10:3:4,6 150 2,5 0,93 147 83
11 10:4:6,2 150 1,5 0,80 137 77
12 10:4:6,2 180 1,5 0,89 145 79
13 10:4:6,2 220 1,5 0,95 149 79
14 10:4:6,2 150 2 0,86 140 78
15 10:4:6,2 150 2,5 0,97 149 78
Субериновые кислоты: адипиновая кислота: о-фенилендиамин
16 10:3,8:6,0 200 2,3 0,98 146 78
Субериновые кислоты: себациновая кислота: n-фенилендиамин
17 10:3,4:6,1 215 2,5 0,98 146 77
Субериновые кислоты: себациновая кислота: о-фенилендиамин
18 10:3,1:6,1 210 2,4 0,99 144 78
Субериновые кислоты: адипиновая кислота: гексаметилендиамин
19 10:3,9:6,0 220 2,5 0,98 136 77
Субериновые кислоты: себациновая кислота: гексаметилендиамин
20 10:3,8:6,0 215 2,5 0,99 133 77
Прототип (Бетулин: себациновая кислота)
21 1:1,034 260 23 0,996 200 65-77

Замена адипиновой кислоты на себациновую кислоту в полиэфире (пример №18) также позволяет получить плиты с прочностью, не уступающей прототипу. Замена n-фенилендиамина на о-фенилендиамин (пример №17, 19) или гексаметилендиамин (пример №20, 21) в случае использования себациновой или адипиновой кислоты также позволяет получить плиты с прочностью соответствующей прочности плит по прототипу.

Также надо отметить, что во всех случаях степень превращения полиэфиров по заявляемому способу ниже, чем у прототипа, но прочность получаемых плит равна прочности плит по прототипу. Температура плавления получаемых полиэфиров по заявляемому способу не зависимо от соотношения компонентов и компонентного состава меньше, чем у прототипа, что делает процесс получения древесно-волокнистых плит более экономичным.

1. Способ получения полиэфира, заключающийся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде, отличающийся тем, что процесс поликонденсации осуществляют между субериновыми кислотами, адипиновой кислотой или себациновой и n-фенилендиамином, или о-фенилендиамином, или гексаметилендиамином при массовом соотношении субериновые кислоты: адипиновая или себациновая кислота: п-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин - 10:(2÷4):(3,1÷6,2) при температуре 150-220°С.

2. Способ по п.1, отличающийся тем, что продолжительность процесса поликонденсации составляет 1,5-2,5 ч.

Похожие патенты:

Изобретение относится к способу получения различных биоразлагаемых алифатических и алифатически-ароматических сложных полиэфиров из одной или нескольких алифатических дикарбоновых кислот или сложных эфиров этих кислот и одного или нескольких алифатических диолов или смеси различных алифатических и ароматических дикарбоновых кислот и алифатических диолов

Настоящее изобретение относится к биоразлагаемому смешанному алифатически-ароматическому сложному полиэфиру, пригодному для экструзионного покрытия, содержащему звенья, образованные из по меньшей мере дикарбоновой кислоты и по меньшей мере диола, с длинноцепочечными разветвлениями, и, по существу, свободному от геля, характеризующемуся вязкостью при сдвиге от 800 до 1600 Па*с, константой термостойкости менее чем 1,5*10-4, прочностью расплава от 2 до 4,5 г и относительным удлинением при разрыве более 30. Биоразлагаемый сложный полиэфир может быть получен посредством способа реактивной экструзии, из линейного предшественника полиэфира, содержащего звенья, образованные дикарбоновой кислотой и диолом, и имеющего показатель текучести расплава от 5 г/10 мин до 30 г/10 мин и содержание концевой ненасыщенности от 0,1 до 1% моль/моль. Способ осуществляют с добавлением пероксидов, эпоксидов и карбодиимидов. Также объектами изобретения являются слоистое изделие, состоящее по меньшей мере из основы, и по меньшей мере первого слоя, состоящего из сложного полиэфира в соответствии с изобретением, растяжимая пленка, многослойные пленки и композиция, пригодная для нанесения покрытия методом экструзии, состоящая из биоразлагаемого смешанного алифатически-ароматического сложного эфира и полимера молочной кислоты. Технический результат - получение биоразлагаемых сложных полиэфиров, обладающих физико-химическими характеристиками, дающими возможность получать тонкие пленки с высокой стабильностью расплава и высокой прозрачностью. 8 н. и 13 з.п. ф-лы, 7 ил., 4 пр.

Настоящее изобретение относится к пенополиуретанам, полученным из сложных полиэфирполиолов, полученных реакцией диолов со смесью двухосновных кислот, произведенных из смеси динитрильных соединений, получаемых как побочные продукты в производстве адипонитрила путем гидроцианирования бутадиена. Пенополиуретан получен реакцией: a) полиизоцианата и b) полиэфирполиола, который получен полимеризацией смеси полиольных мономеров и мономерных двухосновных кислот, причем указанные мономерные двухосновные кислоты состоят из по меньшей мере одной смеси М двухосновных кислот, имеющей следующий весовой состав: метилглутаровая кислота (MGA): 80-95% этилянтарная кислота (ESA): 0-10% адипиновая кислота (АА): 5-15%, где двухосновные кислоты смеси М могут полностью или частично находиться в форме ангидрида, и где реакцию осуществляют в присутствии пено- или порообразователя и катализатора. Технический результат - пенополиуретаны согласно изобретению имеют повышенный уровень физических свойств, сравнимый со свойствами пенополиуретанов, применяющихся, в частности, в обувной промышленности.15 з.п.ф-лы,5 табл.,5пр.

Настоящее изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер. Описан контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, где терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинаций, и диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинаций, причем оба компонента - терефталатный и диольный, частично или полностью получены из, по меньшей мере, одного материала на основе биосырья. Технический результат - получение контейнера для пищевых продуктов или напитков, содержего полиэтилентерефталат, производимый из возобновляемых ресурсов, обладающий теми же свойствами что полиэтилентерефталат, полученный из нефти. 1 н. и 13 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Настоящее изобретение относится к получению и применению сложных полиэфирполиолов. Описан способ получения сложных полиэфирполиолов, в котором: на стадии a) смешивают, по меньшей мере, один ангидрид карбоновой кислоты (A), выбираемый из группы, состоящей из фталевого ангидрида, ангидрида тримеллитовой кислоты и ангидрида пиромеллитовой кислоты, и диэтиленгликоль (B) и подвергают их взаимодействию, причем молярное отношение компонентов (B) к (A) находится в пределах от 1,5:1,0 до 0,7:1,0, а общее содержание компонентов (A) и (B) в расчете на массу всех компонентов смеси находится в пределах от 66 до 90 мас.%, a на стадии b) к сложному полиэфирполиолу со стадии a) добавляют диэтиленгликоль (B), причем сложный полиэфирполиол со стадии a) имеет более высокую молекулярную массу, чем сложный полиэфирполиол со стадии b), сложный полиэфирполиол со стадии a) имеет молекулярную массу в пределах 1400 и 430 г/моль и гидроксильное число в пределах между 80 и 260 мг КОН/кг, сложный полиэфирполиол со стадии b) имеет молекулярную массу в пределах 750 и 350 г/моль и гидроксильное число в пределах между 150 и 320 мг КОН/кг, и причем на стадии a) добавляют, по меньшей мере, один другой гликоль (C) с 2-4 атомами углерода за исключением диэтиленгликоля и, по меньшей мере, одну алифатическую дикарбоновую кислоту (D) с 5-12 атомами углерода, а количество компонентов (C) и (D) на стадии а) выбирают таким, чтобы количество компонентов (A), (B), (C) и (D) в смеси составляло 100 мас.%. Также описан способ получения пенополиуретановых (ПУР) или пенополиизоциануратных (ПИР) пенопластов, включающий стадии: a) взаимодействия сложного полиэфирполиола, полученного указанным выше способом, с b) полиизоцианатсодержащим компонентом, c) вспенивающим средством, d) одним или несколькими катализаторами, e) при необходимости, с антипиреном и/или другими вспомогательными веществами и добавками. Описано применение пенополиуретанов (ПУР) или пенополиизоциануратов (ПИР), полученных указанным выше способом, для получения металлсодержащих слоистых композиционных элементов. Описан металлсодержащий слоистый композиционный элемент, включающий металлический слой и слой, содержащий ПУР- или ПИР-пенопласт, получаемый указанным выше способом. Технический результат - снижение количества образующегося диоксана по отношению к количеству используемого диэтиленгликоля, при получении сложных полиэфирполиолов. 4 н. и 5 з.п. ф-лы, 5 табл., 18 пр.

Предложен способ получения полимера, включающий взаимодействие 1,6-гександиола с дикарбоновыми кислотами или диизоцианатами в присутствии по меньшей мере одного катализатора, причем в качестве 1,6-гександиола используют 1,6-гександиол, который после его получения путем гидрирования подвергают по меньшей мере однократной дистилляции, при которой молярное отношение кислорода к 1,6-гександиолу составляет менее 1:100, и который в процессе дистилляции содержит ≤5 частей на млн каталитически активных компонентов и менее 500 частей на млн альдегида. Технический результат - получение полимеров, обладающих индексом цвета менее 150 единиц АРНА-мутности. 7 з.п. ф-лы, 6 пр.

Настоящее изобретение относится к сложным полиэфирам. Описан сложный полиэфир АВ, содержащий фрагменты, произведенные из ди- или полифункциональных органических кислотных соединений А, и фрагменты, произведенные из ди- или полифункциональных органических гидроксисоединений В, где соединения А включают долю вещества a1 в количестве от a11 до a12 для по меньшей мере одного кислотного соединения А1 и долю вещества a2 в количестве от a21 до a22 для по меньшей мере одного кислотного соединения А2, и где соединения В включают долю вещества b1 в количестве от b11 до b12 для по меньшей мере одного гидроксифункционального соединения В1 и долю вещества b2 в количестве от b21 до b22 для по меньшей мере одного гидроксифункционального соединения В2, где при этом присутствует по меньшей мере один из каждого из фрагментов соединений A1, А2, В1 и В2, и при этом присутствуют по меньшей мере два соединения, соответствующие А2, или по меньшей мере, два соединения, соответствующие В2, где кислотные соединения А1 и А2 и гидроксифункциональные соединения В1 и В2 определяются следующим далее образом: группа А1 кислотных соединений включает органические дикислотные соединения, имеющие две кислотные группы на одну молекулу, и органические поликислотные соединения, имеющие три и более кислотные группы на одну молекулу, которые выбраны из группы, включающей изофталевую кислоту, тримеллитовый ангидрид, гексагидрофталевый ангидрид, циклогексан-1,4-дикарбоновую кислоту и тетрагидрофталевую кислоту, и группа А2 кислотных соединений включает органические дикислотные соединения, которые имеют две кислотные группы на одну молекулу, и органические поликислотные соединения, которые имеют три и более кислотные группы на одну молекулу, которые выбраны из группы, включающей адипиновую кислоту, димерные жирные кислоты и себациновую кислоту, где кислотные группы представляют собой карбоксильные группы -СООН, и где две соседние кислотные группы, то есть такие кислотные группы, которые связаны с атомами углерода, непосредственно связанными друг с другом, могут быть частично или полностью замещены соответствующей группой ангидрида кислоты, и группа В1 гидроксифункциональных соединений включает органические дигидроксисоединения, имеющие две гидроксильные группы на одну молекулу, и органические полигидроксисоединения, имеющие три и более гидроксильные группы на одну молекулу, которые выбраны из группы, включающей триметилолпропан, 1,2-бисгидроксиметилциклогексан и 1,2-дигидроксипропан, и группа В2 гидроксифункциональных соединений включает органические дигидроксисоединения, которые имеют две гидроксильные группы на одну молекулу, и органические полигидроксисоединения, которые имеют три и более гидроксильные группы на одну молекулу, которые выбраны из группы, включающей 1,4-бутандиол, 1,6-гександиол, 2,2′-дигидроксидиэтиловый эфир и 1,2-бис(2-гидроксипропокси)пропан. Также описан способ использования указанного выше сложного полиэфира для получения покрытий. Технический результат - получение сложного полиэфира, характеризующегося хорошей эластичностью, ударной вязкостью и адгезий, а также достаточной твердостью по отношению к истиранию и вдавливанию. 2 н. и 12 з.п. ф-лы, 2 табл., 22 пр.

Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности

Конденсация - это основа создания полимерных синтетических материалов: поливинилхлорида, олефинов. При использовании базовых вариантов мономеров можно путем сополиконденсации получать миллионы тонн новых полимерных веществ. В настоящее время существуют различные методы, которые позволяют не только создавать вещества, но и влиять на молекулярно-массовое распределение полимеров.

Особенности процесса

Реакция поликонденсации - это процесс получения полимера при стадийном присоединении друг к другу молекул полифункциональных мономеров. При этом происходит выделение низкомолекулярных продуктов.

В качестве основы этого процесса можно рассматривать Благодаря выделению побочных продуктов, существуют отличия в элементарном составе полимера и исходного мономера.

Реакция поликонденсации аминокислоты связана с образованием молекул воды в ходе взаимодействия амино- и карбоксильной группы соседних молекул. В этом случае первая стадия реакции связана с образованием димеров, затем они превращаются в высокомолекулярные вещества.

Реакция поликонденсации, пример которой мы рассматриваем, отличается способностью образования на каждом этапе устойчивых веществ. Получаемые при взаимодействии аминокислот димеры, тримеры и полимеры можно выделять на всех промежуточных стадиях из реакционной смеси.

Итак, поликонденсация - это ступенчатый процесс. Для его протекания нужны молекулы мономеров, в составе которых от двух функциональных групп, способных взаимодействовать между собой.

Наличие функциональных групп позволяет олигомерам реагировать не только между собой, но и с мономерами. Подобное взаимодействие характеризует рост цепи полимера. Если у исходных мономеров по две функциональные группы, цепь растет в одном направлении, что приводит к образованию линейных молекул.

Поликонденсация - это реакция, результатом которой будут продукты, способные к последующему взаимодействию.

Классификация

Реакция поликонденсации, пример которой можно записать для многих органических веществ, дает представление о сложности протекающего взаимодействия.

В настоящее время подобные процессы принято классифицировать по определенным признакам:

  • тип связи между звеньями;
  • количество мономеров, принимающих участие в реакции;
  • механизм процесса.

Чем отличается реакция поликонденсации для разных классов органических веществ? Например, при полиамидировании в качестве исходных компонентов используют амины и карбоновые кислоты. В ходе ступенчатого взаимодействия между мономерами наблюдается образование полимера и молекул воды.

При этерификации исходными веществами являются спирт и карбоновая кислота, а условием получения сложного эфира является применение концентрированной серной кислоты в виде катализатора.

Как происходит поликонденсация? Примеры взаимодействий свидетельствуют о том, что в зависимости от числа мономеров можно выделить гомо- и гетерополиконденсацию. Например, при гомополиконденсации в качестве мономеров будут выступать вещества, имеющие сходные функциональные группы. В этом случае конденсация - это объединение исходных веществ с выделением воды. В качестве примера можно привести реакцию между несколькими аминокислотами, в результате которой будет образовываться полипептид (молекула белка).

Механизм процесса

В зависимости от особенностей протекания выделяют обратимую (равновесную) и необратимую (неравновесную) поликонденсацию. Подобное деление можно объяснить присутствием либо отсутствием деструктивных реакций, которые предполагают использование низкомолекулярных процессов, различной активности мономеров, а также допускают отличия в кинетических и термодинамических факторах. Для таких взаимодействий характерны невысокие константы равновесия, незначительная скорость процесса, длительность реакции, высокие температуры.

Во многих случаях для необратимых процессов характерно использование мономеров, отличающихся высокой реакционной способностью.

Высокие скорости процесса с применением мономера такого типа объясняют выбор низкотемпературной и межфазной поликонденсации в растворе. Необратимость процесса обуславливается невысокой температурой реакционной смеси, получением малоактивного химического вещества. В органической химии есть и такие варианты неравновесной поликонденсации, которые протекают в расплавах при высоких температурах. Примером такого процесса является процесс получения из диолов и дигалогенпроизводных полиэфиров.

Уравнение Карозерса

Глубина поликонденсации связана с тщательностью удаления из реакционной среды продуктов низкомолекулярного вида, которые мешают смещению процесса в сторону образования полимерного соединения.

Между глубиной процесса и степенью полимеризации есть зависимость, которая была объединена в математическую формулу. При реакции поликонденсации происходит исчезновение двух функциональных групп и одной молекулы мономера. Так как за время прохождения процесса происходит расходование какого-то количества молекул, глубина реакции связана с долей прореагировавших функциональных групп.

Чем больше будет взаимодействие, тем выше окажется степень полимеризации. Глубина процесса характеризуется продолжительностью реакции, величиной макромолекул. Чем отличается полимеризация от поликонденсации? В первую очередь характером протекания, а также скоростью процесса.

Причины прекращения процесса

Остановка роста цепи полимера вызывается различными причинами химического и физического характера. В качестве основных факторов, способствующих остановке процесса синтеза полимерного соединения, выделим:

  • повышение вязкости среды;
  • снижение скорости процесса диффузии;
  • уменьшение концентрации взаимодействующих веществ;
  • понижение температуры.

При повышении вязкости реакционной среды, а также понижении концентрации функциональных групп идет снижение вероятности столкновения молекул с последующей остановкой процесса роста.

Среди химических причин торможения поликонденсации лидируют:

  • изменение химического состава функциональных групп;
  • непропорциональное количество мономеров;
  • присутствие в системе низкомолекулярного продукта реакции;
  • равновесие между прямой и обратной реакциями.

Специфика кинетики

Реакции полимеризации и поликонденсации связаны с изменением скорости взаимодействия. Проанализируем основные кинетические процессы на примере процесса полиэтерификации.

Кислотный катализ протекает в две стадии. Сначала наблюдается протонирование кислоты - исходного реагента кислотой, выступающей в роли катализатора.

В ходе атаки реагентом спиртовой группы происходит распад интермедиата до продукта реакции. Для протекания прямой реакции важно своевременно удалять из реакционной смеси молекулы воды. Постепенно наблюдается уменьшение скорости процесса, вызываемое увеличением относительной молекулярной массы продукта поликонденсации.

В случае применения эквивалентных количеств функциональных групп на концах молекул взаимодействие может осуществляться длительный промежуток времени, пока не будет создана гигантская макромолекула.

Варианты проведения процессов

Полимеризация и поликонденсация - это важные процессы, используемые в современном химическом производстве. Выделяют несколько лабораторных и промышленных способов проведения процесса поликонденсации:

  • в растворе;
  • в расплаве;
  • в виде межфазного процесса;
  • в эмульсии;
  • на матрицах.

Реакции в расплавах необходимы для получения полиамидов и полиэфиров. В основном в расплаве равновесная поликонденсация протекает в две стадии. Сначала взаимодействие осуществляется в вакууме, что позволяет избежать термоокислительной деструкции мономеров, а также продуктов поликонденсации, гарантирует постепенное нагревание реакционной смеси, полное удаление низкомолекулярных продуктов.

Важные факты

Большая часть реакций проводится без использования катализатора. Вакуумирование расплава на второй стадии реакции сопровождается полной очисткой полимера, поэтому нет необходимости дополнительно проводить трудоемкий процесс переосаждения. Не допускается резкого повышения температуры на первом этапе взаимодействия, поскольку это может привести к частичному испарению мономеров, нарушению количественного соотношения взаимодействующих реагентов.

Полимеризация: особенности и примеры

Данный процесс характеризуется использованием одного исходного мономера. Например, путем такой реакции можно получать полиэтилен из исходного алкена.

Особенностью полимеризации является формирование крупных молекул полимера с заданным количеством повторяющихся структурных звеньев.

Заключение

Путем поликонденсации можно получить множество полимеров, востребованных в различных современных производствах. Например, в ходе этого процесса можно выделить фенолформальдегидные смолы. Взаимодействие формальдегида и фенола сопровождается образованием на первом этапе промежуточного соединения (фенолспирта). Затем наблюдается конденсация, приводящая к получению высокомолекулярного соединения - фенолформальдегидной смолы.

Полученный путем поликонденсации продукт нашел свое применение в создании множества современных материалов. Фенопласты, в основе которых есть данное соединение, обладают прекрасными теплоизоляционными характеристиками, поэтому востребованы в строительстве.

Полиэфиры, полиамиды, полученные путем поликонденсации, используют в медицине, технике, химическом производстве.

Поликонденсация - это процесс образования , протекающий по механизму замещения и обычно сопровождающийся выделением низкомолекулярных побочных продуктов. Поэтому элементный состав полимера отличается от элементного состава исходных веществ.

Поликонденсация является важнейшим методом синтеза полимеров, широко используемым в технологии пластических масс.

Общие закономерности реакции поликонденсации равновесная и неравновесная

В реакцию поликонденсации могут вступать исходные соединения (), содержащие две или более функциональные группы. При взаимодействии этих групп происходит отщепление молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул. Типичным примером такой реакции может служить поликонденсация , в результате которой образуются полиамиды :

Поликонденсация представляет собой ступенчатый процесс.
Рост цепи происходит в результате взаимодействия мономера друг с другом, а также с промежуточными продуктами: олигомерными или полимерными молекулами - или при взаимодействии олигомерных или полимерных молекул между собой. В поликонденсационной системе мономеры расходуются довольно быстро после начала реакции, однако увеличение полимера происходит в течение всего процесса. Этим поликонденсация резко отличается от цепной полимеризации. На рис. 1 дана качественная картина возрастания молекулярной массы и изменения молекулярно-массового распределения (ММР) в процессе поликонденсации.

Среднечисловая и среднемассовая масса возрастают с увеличением степени завершенности реакции р в соответствии с уравнениями:

Где m - молекулярная масса элементарного звена полимера, р -изменяется.

Поэтому для получения высокомолекулярных полимеров методами поликонденсации необходимо проводить реакцию до высоких значений степени завершенности (р ->1 ) .

Коэффициент полидисперсности определяется соотношением среднемассовой и среднечисловой молекулярных масс и в случае наиболее вероятного ММР равен:

При степени завершенности реакции поликонденсации, равной 1, коэффициент полидисперсности:

Реакция, в которой участвуют однородные молекулы называется гомополиконденсацией . Однако в большинстве случаев поликонденсация протекает с участием разнородных молекул:Такие реакции называют реакциями гетерополиконденсации . Различают равновесную и неравновесную поликонденсацию. Для равновесной поликонденсации константа равновесия Кр≤1000 , для неравновесной поликонденсации константы равновесия Кр>1000 .

Примером равновесной поликонденсации является образование полиэфиров или полиамидов при нагревании дикарбоновых кислот с гликолями или диаминами. Примером неравновесной поликонденсации может служить реакция образования полиамидов или полиэфиров при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или бисфенолами.

В зависимости от функциональности исходных мономеров, т. е. от числа реакционноспособных групп в молекуле, а также от их природы, при поликонденсации образуются различные продукты.

При поликонденсации бифункциональных соединений образуются линейные полимеры. В общем виде реакция может быть описана уравнением:

Если одно или оба исходных соединения являются три- или более функциональными, то в результате реакции образуются полимеры разветвленного и сетчатого (трехмерного) строения:

Важным фактором, определяющим , образующегося при поликонденсации двух разнородных , является соотношение функциональных групп. Например, если в реакции участвуют (n+1) моль одного мономера и n молей другого, реакция поликонденсации может быть изображена следующей схемой:

Если число одного мономера превышает число молей другого или наоборот, то избыток одного из мономеров приводит к снижению молекулярной массы полимера. Степень полимеризации Р образующегося полимера определяется этим избытком и может быть рассчитана по уравнению Р = 100q , где q - избыток одного из мономеров, % (мол.).

Эта зависимость молекулярной массы от избытка мономеров носит название правила неэквивалентности функциональных групп.

Монофункциональные соединения не образуют полимеров, но применяя их, можно регулировать молекулярную массу полимеров, получаемых поликонденсацией. Присутствие монофункциональных соединений является чрезвычайно важным фактором, определяющим молекулярную массу образующегося полимера. В этом случае также действует правило неэквивалентности функциональных групп.

Монофункциональное соединение, вступая в реакцию с одной из функциональных групп, участвующих в поликонденсации, блокирует эту группу и ограничивает рост полимерной цепи. Реакция поликонденсации превращается по исчерпании всех функциональных групп, способных взаимодействовать с монофункциональным соединением. При этом функциональные группы другого типа остаются в системе в избытке, эквивалентном количеству введенного монофункционального соединения, как это видно из уравнения:

Степень полимеризации образующегося полимера определяется количеством взятого в реакцию монофункционального соединения и может быть рассчитана по приведенному выше уравнению.

Необходимым условием, обеспечивающим достижение высокой молекулярной массы полимера в реакциях равновесной поликонденсации , является полное удаление низкомолекулярного побочного продукта. В этих случаях молекулярная масса полимера определяется равновесием между образующимися связями макромолекулы полимера, выделяющимся при поликонденсации низкомолекулярным продуктом и свободными функциональными группами мономера (или сомономеров). Поэтому смещение равновесия путем удаления низкомолекулярного продукта способствует получению полимера с большей молекулярной массой, как это видно из уравнения:

Значительное влияние на и молекулярную массу образующегося полимера оказывают условия проведения реакции, а также присутствие катализаторов.

В отсутствие кислотных катализаторов при синтезе сложных полиэфиров реакцией двухосновных карбоновых кислот с диолами одна из молекул кислоты действует как катализатор и скорость процесса описывается уравнением v=k[A] 2 [B] , где [А] - концентрация двухосновной кислоты; [В] - концентрация диола; k - константа скорости реакции.

При эквимольных количествах исходных реагентов, т. е. при [А] = [В] , скорость полиэтерификации равна:

v = k[А] 3 = k [ВР] 3

Из дифференциального уравнения скорости:

интегрированием получаем:

где [А] 0 - начальная концентрация двухосновной кислоты; р -степень завершенности; τ - время реакции; С - константа.

1/(1-р)2 от τ . С повышением температуры увеличивается молекулярная масса-полимера за счет роста константы скорости реакции в соответствии с уравнением:где С - константа.

Однако значительное повышение температуры приводит к нежелательным побочным процессам - разрушению функциональных групп, деструкции и структурированию полимера. При добавлении в систему низкомолекулярных кислот в качестве катализаторов скорость поликонденсации описывается уравнением

v = k [А][В]

и при [А] = [В]

v=k[A] 2 = k[B] 2

Дифференциальное уравнение скорости расходования полимеров:

После интегрирования дает:

Откуда следует линейная зависимость 1/1-р от τ . Для таких процессов поликонденсации, протекающих как реакции второго порядка, средняя степень полимеризации пропорциональна начальной концентрации исходных веществ и времени реакции:

В общем случае при поликонденсации среднечисловая степень полимеризации ¯Р определяется как отношение числа исходных молекул [А] 0 к числу непрореагировавших молекул [А] τ :

[А] τ =[А] 0 (1-р)

где (1- р) -доля непрореагировавших молекул, т. е.:

Таким образом, если р = 0,9 , то среднечисловая степень полимеризации:

Типичные поликонденсационные полимеры приведены в табл. 1.

Способы проведения поликонденсации

В настоящее время известны 4 основных способа проведения процессов поликонденсации:

  • в расплаве;
  • в растворе;
  • межфазная поликонденсация;
  • поликонденсация в твердой фазе.

Поликонденсация в расплаве является в настоящее время наиболее распространенным способом, широко используемым в промышленности для получения ряда полимеров (полиэфиров, полиамидов и др.). Этот способ применяется в тех случаях, когда исходные вещества и синтезируемый полимер устойчивы при температуре плавления и могут выдерживать длительное нагревание в расплавленном состоянии без разложения. Поэтому поликонденсация в расплаве используется для получения полимеров со сравнительно невысокой температурой плавления (до 300 °С). Достоинствами процесса поликонденсации в расплаве являются высокое качество полимера и отсутствие необходимости удалять из полимера растворитель и регенерировать его.

Технология процесса сравнительно проста. Исходные мономеры смешивают и нагревают в реакционном аппарате в течение нескольких часов при температуре выше температуры плавления синтезируемого полимера. Для уменьшения вероятности протекания побочных реакций, например, окисления, процесс проводят обычно в среде инертного газа (азота). Поликонденсацию заканчивают в вакууме для более полной отгонки низкомолекулярного продукта.

Реакцию в расплаве чаще всего используют для проведения равновесной поликонденсации. Иногда в расплаве можно осуществлять и неравновесные процессы. Однако неравновесные процессы сопровождаются значительным тепловыделением, происходящим за сравнительно короткое время, что объясняется довольно большими скоростями процесса и высокими концентрациями исходных веществ. Поэтому для снижения тепловыделения и облегчения управления процессом исходные мономеры вводят в реакционную систему не сразу, а постепенно.

Поликонденсация в растворе позволяет проводить реакцию при более низкой температуре, поэтому этот способ используют в тех случаях, когда исходные компоненты и полимер неустойчивы при температуре плавления.

Реакцию обычно проводят в растворителях, в которых растворимы и исходные вещества, и образующийся полимер. Можно применять растворитель, в котором хорошо растворяются лишь исходные вещества, а полимер плохо растворим или совсем нерастворим. Однако молекулярная масса получаемого при этом полимера, как правило, невысока.

Реакция в растворе при нагревании протекает с довольно высокой скоростью и может быть доведена до глубоких степеней превращения, так как в присутствии растворителя уменьшается вязкость системы, улучшается отвод выделяющегося тепла и обеспечиваются более мягкие условия протекания реакции.

Наиболее глубоко поликонденсация протекает в тех растворителях, в которых выделяющийся низкомолекулярный продукт плохо растворим и легко удаляется отгонкой, особенно если он образует азеотропную смесь.

Низкомолекулярный продукт может быть также удален из сферы реакции за счет образования химического соединения с растворителем или путем добавления веществ, связывающих низкомолекулярный продукт. Этот способ обычно используют при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или двухатомными фенолами при синтезе полиамидов и полиэфиров. Выделяющийся хлористый водород связывают основаниями, например, третичными аминами.

Поликонденсация в растворе имеет некоторые технологические преимущества перед другими способами поликонденсации. Она проводится в более мягких температурных условиях, позволяет исключить местные перегревы за счет более интенсивного теплообмена, не требует применения вакуума и инертного газа, а следовательно, сложной аппаратуры. Однако синтез полимеров этим способом связан с необходимостью проведения таких операций, как приготовление растворов мономеров, регенерация растворителя, промывка полимера, его фильтрация, сушка и т. п.

Способ поликонденсации на поверхности раздела двух несмешивающихся жидких фаз называется межфазной поликонденсацией . В некоторых случаях этот способ применяется для промышленного получения полимеров, например, полиамидов и полиэфиров.

При проведении межфазной поликонденсации исходные мономеры растворяют раздельно в двух несмешивающихся жидкостях. Обычно одной из них является вода, другой - не смешивающийся с водой растворитель, инертный к мономерам.

При синтезе полиамидов и полиэфиров применяют водный раствор диамина или двухатомного фенола (к которому для связывания выделяющегося хлористого водорода добавляют щелочь) и раствор хлорангидрида дикарбоновой кислоты в углеводороде. На границе раздела водной и углеводородной фаз образуется полимер. Для ускорения процесса применяют перемешивание. Полученный полимер отфильтровывают, промывают и высушивают.

Межфазная поликонденсация имеет ряд достоинств, к числу которых можно отнести большие скорости процесса при низких температурах и атмосферном давлении, а также возможность получения высокоплавких полимеров. Однако применение этого способа ограничивается необходимостью использовать мономеры с высокой реакционной способностью и большие объемы растворов исходных реагентов, поскольку при межфазной поликонденсации применяются довольно разбавленные растворы.

Процессы поликонденсации, протекающие исключительно в твердой фазе , в промышленности не применяются. Обычно используются процессы, в которых первая стадия протекает в растворе или расплаве, а последняя стадия - в твердой фазе. Примером такого процесса является трехмерная поликонденсация, широко применяемая в настоящее время в промышленности для получения ряда полимеров (фенолоальдегидных,, и др.).

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.

Поликонденсация в расплаве и растворе

ПОЛИЭТИЛЕНТЕРЕФТАЛАТ.. 2

Полиэфиракрилаты. 7

Производство поликарбоната. 9


СЛОЖНЫЕ ПОЛИЭФИРЫ

К гетероцепным сложным полиэфирам относятся высокомоле­кулярные соединения4, содержащие в основной цепи.слржноэфир-ные связи. В общем виде строение линейных полиэфиров дикарбо-новых кислот и диолов может быть изображено формулой [-OCRCOOR"O-}„, где R - остаток дикарбоновой кислоты, а R" - остаток диола.

Впервые синтетические полиэфиры были получены свыше 100 лет назад. В 1833 г. Гей-Люссак и Пелуза синтезировали поли­эфир нагреванием молочной кислоты. Ненасыщенные полиэфиры малеиновой и фумаровой кислот с этиленгликолем были получены в 1.894 г. Форлендером. В 1901 г. Смит синтезировал полиэфиры из фталевого ангидрида и глицерина.

Интенсивные исследования в области полиэфиров начались после 1925 г., когда в результате работ Карозерса, Мадсорова, Кинли и других ученых были получены полиэфиры разнообразного строения и была показана возможность их практического исполь­зования. К этому же времени относится начало промышленного производства глифталевых, а затем и других алкидных полиме­ров. В 1941 г. Винфилд и Диксон осуществили синтез полиэтилен-терефталата, производство которого в настоящее время неуклон­но увеличивается. В последнее десятилетие освоено промышлен­ное производство поликарбонатов - полиэфиров двухатомных фенолов и угольной кислоты, а также новых теплостойких поли­эфиров двухатомных фенолов и ароматических дикарбоновых кис­лот, названных полиарилатами.

Из алифатических полиэфиров большое распространение полу­чили в последние годы ненасыщенные полиэфиры, синтезируемые из гликолей и ненасыщенных дикарбоновых кислот.

АЛКИДНЫЕПОЛИМЕРЫ

Алкидные полимеры представляют собой продукты поликон­денсации многоосновных кислот с многоатомными спиртами. Наи­большее техническое применение имеют глифталевые полимеры,

получаемые поликонденсацией фталевого ангидрида с глице­рином:

Такие модифицированные полиэфиры способны полимеризоваться при нагревании на воздухе, давая прочные пленки.

На практике для получения алкидных олигомеров и полимеров применяют высыхающие масла типа льняного. Для этого прово­дят предварительную реакцию глицеролиза, нагревая глицерин с маслами, а образовавшиеся моноглицериды используют для по­ликонденсации с фталевым ангидридом.

В качестве спиртового компонента для синтеза алкидных поли­меров применяют также пентаэритрит. Пентаэритрит, содержащий

Поликонденсацию проводят обычно при эквимолярном соотно­шении фталевого ангидрида (3 моль) и глицерина (2 моль) при 150-180°С. На первой стадии происходит образование кислых эфиров, содержащих кислотные и гидроксильные группы, которые могут подвергаться дальнейшей этерификации сначала с получе­нием полимеров линейного строения, а затем (при более высоких температурах) с превращением их в полимеры пространственного строения. Вторая стадия протекает значительно медленнее первой. Выделение, воды начинается после завершения реакции примерно на 50%, когда все ангидридные группы фталевого ангидрида прак­тически израсходованы. Дальнейший процесс представляет собой этерификацию карбоксильных групп спиртовыми. Вследствие боль­шей реакционной способности а-гидроксильных групп глицерина в первую очередь образуются а-замещенные моно- и диэфиры, за­тем уже реагируют р-гидроксильные группы глицерина. При 75- 80%-ной степени превращения глифталевый полимер (молекуляр­ный вес 700-1100) желатинизируется. Преждевременной желати-низации можно избежать, вводя в реакционную смесь однооснов­ную кислоту, одноатомный спирт или другие добавки. При приме­нении в качестве модифицирующих добавок ненасыщенных жир­ных кислот (например, олеиновой, линолевой) получаются поли­эфиры, содержащие в боковых ответвлениях двойные связи:


в молекуле равноценные первичные спиртовые группы, реагирует с двухосновными кислотами более энергично, чем глицерин, по­этому желатинизация в этом случае наступает на более ранней стадии протекания реакции. Для предотвращения желатинизации полипентаэритритфталаты модифицируют. Более высокая функ­циональность пентаэритрита по сравнению с глицерином позволяет применять для модификации алкидных полимеров масла в значи­тельно больших количествах, заменять высыхающие масла полу­высыхающими и даже невысыхающими, что придает покрытиям на основе таких полимеров значительно большую эластичность.

Скорость высыхания модифицированных алкидных полимеров является функцией содержания в них ненасыщенной кислоты. Для ускорения высыхания к ним прибавляют сиккативы.

В последние годы исследования в области синтеза алкидных смол проводились в следующих направлениях: 1) замена глицери­на и пентаэритрита другими многоатомными спиртами (например, триметилолпропаном, триметилолэтаном); 2) частичная замена фталевого ангидрида другими кислотами (например, тримеллито-вым ангидридом, изофталево,й, фумаровой, малеиновой кислота­ми) ; 3) использование для модификации алкидных полимеров раз­личных масел, жирных кислот и продуктов их переработки (напри­мер, метиловых эфиров жирных кислот льняного, соевого, дегидра­тированного касторового, тунгового масел, димерных кислот и др.).

В. результате этих работ были получены алкидные полимеры различного химического строения. Покрытия из алкидных поли­меров на основе триметилолпропана, модифицированных жирны­ми кислотами таллового масла, по стойкости к нагреванию, твер­дости, ударной вязкости, стойкости к 5%-ной щелочи и кипящей воде, сохранности блеска выгодно отличаются от покрытий из соответствующих алкидных смол на основе триметилолэтана и глицерина.

Применение для синтеза алкидных олигомеров и полимеров вместо фталевого ангидрида изофталевой кислоты дает возмож­ность получать "на основе этих полимеров лаки воздушной сушки с меньшей продолжительностью высыхания, большими ударной вязкостью, сопротивлением к истиранию и твердостью. Алкидные полимеры, синтезированные из терефталевой и изофталевой кис­лот, характеризуются большей теплостойкостью, чем соответ­ствующие полимеры ортофталевой кислоты. Значительно улуч­шаются свойства алкидных полимеров при замене в них фталево­го ангидрида гексагидрофталевым ангидридом. Пленки из таких полимеров характеризуются повышенными показателями физико-механических свойств, а сами олигомеры и полимеры имеют мень­шую вязкость, более светлую окраску, меньшее кислотное число, меньшую тенденцию к желатинизации, лучшую совместимость с сиккативами. Покрытия из алкидных смол на основе ангидрида тримеллйтовой кислоты обладают большей твердостью и быстрее

представляет собой белые кристаллы или блестящие иглы, плавя­щиеся при 131 °С, растворимые в спирте и с трудом растворимые в воде. Фталевый ангидрид получают с 70-80%-ным выходом окислением нафталина кислородом воздуха в присутствии окислов ванадия в качестве катализатора.

" Глицерин НОСН2СНОНСН2ОН- сиропообразная бесцветная

жидкость, сладкая на вкус, смешивающаяся во всех отношениях

с водой и спиртом, нерастворимая в эфире и хлороформе; т кип

f 290 С, т. пл. -17,9 °С, плотность 1,2604 г/см3, показатель прелом-

Ления 1,474. В технике глицерин получают омылением жиров а

Также из пропилена. "

; Пентаэритрит С (СН2ОН) 4 - кристаллическое вещество, час-

^тично растворимое в воде, с т. пл. 263,5 °С, плотностью 1,397 г/см3.

|Пентаэритрит получают конденсацией уксусного и муравьиного

Цальдегидов в водном растворе в присутствии щелочи.

Производство алкидных полимеров

В промышленности немодифнцированные глифталевые смолы Цполучают конденсацией глицерина с фталевым ангидридом 7(2 моль: 3 моль). Реакцию проводят в реакторах, изготовленных

высыхают по сравнению с покрытиями из алкидных полимеров на основе фталевого ангидрида или изофталевой кислоты.